869 resultados para expectations of future income
Resumo:
This mixed methods investigation examined the nutritional knowledge and habits of adolescent girls in grades 9 through 12 at a secondary school in southern Ontario. Through questionnaires, interviews, and the use of teaching and curriculum documents, this study attempted to understand whether the current nutrition curriculum is influential in developing students' nutritional knowledge, healthy eating habits, and a favourable body image. Data collection occurred over a 2-month period, involving 90 female participants, and the data analysis program SPSS was used for analysis of the quantitative questionnaire data. Interview data were organized into categories, and analysis of any emerging themes occurred. Teaching and curriculum documents were examined to determine any overlap and develop an understanding of the participants' exposure and experience within nutrition within the classroom setting. The findings of this study suggest that the current nutrition education did have an impact on the participants' nutrition knowledge. However, the impact on their eating habits and body image was limited in the context it was measured and tested. The knowledge learned within the classroom may not always be applied outside of the classroom. This study suggests that improvement in the current nutrition curriculum may be needed to have a bigger impact on adolescent females. The findings from the study shine light on areas of improvements for educators as well as development of future curriculum. Changes may need to be made not only in the specific curriculum content and expectations but also the delivery of it by the classroom teacher.
Resumo:
In this hermeneutic phenomenological study, we examined the experience of interprofessional collaboration from the perspective of nursing and medical students. Seventeen medical and nursing students from two different universities participated in the study. We used guiding questions in face-to-face, conversational interviews to explore students’ experience and expectations of interprofessional collaboration within learning situations. Three themes emerged from the data: the great divide, learning means content, and breaking the ice. The findings suggest that the experience of interprofessional collaboration within learning events is influenced by the natural clustering of shared interests among students. Furthermore, the carry-forward of impressions about physician–nurse relationships prior to the educational programs and during clinical placements dominate the formation of new relationships and acquisition of new knowledge about roles, which might have implications for future practice.
Resumo:
En este proyecto analizaremos como las organizaciones se relacionan con el medio y marketing. La idea es determinar cuáles son los métodos de análisis de las comunidades de clientes mediante la relación estratégica comunitaria y el marketing. Por medio del mercadeo se puede conocer el entorno y determinar qué métodos de análisis utilizar para conocer a la comunidad de clientes. Las personas de mercadeo se ocupan de todo lo que ocurre en el entorno, de estar al tanto para saber cuándo hay oportunidades que puedan ser provechosas para la organización o por otro lado cuando hay amenazas de las que debe tener cuidado. Dependiendo del entorno, la organización diseña sus actividades de mercadeo enfocadas en satisfacer las necesidades del consumidor. Las actividades del consumidor se conceptualizan en producto, precio, promoción y plaza que se definen y diseñan basados en la comunidad en la que este inmersa la organización. Es importante buscar información confiable sobre el grupo objetivo al cual se le va ofrecer el producto o servicio, ya que toca analizarlos y comprender a estas personas para diseñar una buena oferta que satisfaga sus necesidades y deseos. Esta persona que recibe el producto o servicio por parte de la organización es el cliente. Los clientes son las personas que llegan a una organización en búsqueda de satisfacer necesidades a través de los bienes y servicios que las empresas ofrecen. Es esencial determinar que los clientes viven en comunidad, es decir comparten ideas por la comunicación tan estrecha que tienen y viven en conjunto bajo las mismas costumbres. Debido a estos es que hoy en día, los consumidores se conglomeran en comunidades de clientes, y para saberles llegar a estos clientes, toca analizarlos por medio de diversos métodos. El uso de las estrategias comunitarias es necesario ya que por medio del marketing se analiza el entorno y se buscan los métodos para analizar a la comunidad de clientes, que comparten características y se analizan en conjunto no por individuo. Es necesario identificar los métodos para relacionarse con la comunidad de clientes, para poder acercarnos a estos y conocerlos bien, saber sus necesidades y deseos y ofrecerles productos y servicios de acuerdo a éstos. En la actualidad estos métodos no son muy comunes ni conocidos, es por esto que nuestro propósito es indagar e identificar estos métodos para saber analizar a las comunidades. En este proyecto se utilizara una metodología de estudio tipo teórico-conceptual buscando las fuentes de información necesarias para llevar a cabo nuestra investigación. Se considera trabajar con El Grupo de Investigación en Perdurabilidad Empresarial y se escogió la línea de gerencia ya que permite entrar en la sociedad del conocimiento, siendo capaces de identificar oportunidades gerenciales en el entorno. Es interesante investigar sobre estos métodos, ya que los clientes esperan un servicio excelente, atento y que se preocupe por ellos y sus necesidades.
Resumo:
This paper provides recent evidence about the beneÖts of attending preschool on future performance. A non-parametric matching procedure is used over two outcomes: math and verbal scores at a national mandatory test (Saber11) in Colombia. It is found that students who had the chance of attending preschool obtain higher scores in math (6.7%) and verbal (5.4%) than those who did not. A considerable fraction of these gaps comes from the upper quintiles of studentís performance, suggesting that preschool matters when is done at high quality institutions. When we include the number of years at the preschool, the gap rises up to 12% in verbal and 17% in math.
Resumo:
Commitment of employees is relatively low in construction. This problem is exasperated by companies inability to attract, motivate, and retain talent that is then often channelled into other more attractive industrial sectors where the prospects, conditions and rewards are perceived to be much higher. The purpose of this study is thus primarily to develop a generic model to maximise employees' engagement, improve their motivation and increase the retention levels. To achieve this aim, the investigation looks into how perceived employment obligations and expectations impact commitment and through that organisational performance. The study is based on the postulations of Luhmann's theory of social systems with communication viewed as a constitutive element of a social system. Consequently expectations of a particular party in an employment relationship are represented in a communicative space requiring the other party's understanding in order to align expectations of both sides in the relationship. Explicitly, alignment of by an employee perceived manager's expectations determines his/ her commitment to fulfil obligations towards the manager. The result of this first stage of research is a conceptual model developed following the substantial supporting evidence in the literature and it forms the framework for mitigation of low commitment, motivation and retention of employees. The model particularly focuses on factors affecting employees' perceived expectations like reneging, incongruence and the process of communication. In the future the model will be validated using empirical data from a combination of observational and enquiry-based research. Once completed, the model will provide a framework for informing Human Resource Management policies with the aim to improve commitment of employees, increase the levels of retention and consequently improve the performance of construction organisations.
Resumo:
This study investigated the relative associations between parent and child anxiety and parents' cognitions about their children. One hundred and four parents of children aged 3-5 years completed questionnaires regarding their own anxiety level, their child's anxiety level and their cognitions about the child, specifically parents' expectations about child distress and avoidance, and parents' perceived control over child mood and behaviour. Both parent anxiety and parent report of child anxiety were significantly associated with parents' cognitions. Specifically, parent report of child anxiety correlated significantly with parent locus of control generally and, more specifically, with parental expectations and perceived control of child anxious mood and behaviour. Parent anxiety correlated significantly with locus of control and parents' expectations of child anxious mood and behaviour. Furthermore, when both child and parent anxiety were taken into account, only parental anxiety remained significantly associated with parental locus of control and perceived control of child anxious behaviour. For parents' perceived control of child anxious mood, only child anxiety remained significantly associated. The results suggest that parents' perceived control over their children's behaviour may primarily reflect parental anxiety, rather than child anxiety. Parental anxiety may, therefore, present an important target for interventions that aim to change parent's cognitions and behaviour.
Resumo:
Over-involved parenting is commonly hypothesized to be it risk factor for the development of anxiety disorders in childhood. This parenting style may result from parental attempts to prevent child distress based on expectations that the child will be unable to cope in a challenging situation. Naturalistic studies are limited in their ability to disentangle the overlapping contribution of child and parent factors in driving parental behaviours. To overcome this difficulty, an experimental study was conducted in which parental expectations of child distress were manipulated and the effects on parent behaviour and child mood were assessed. Fifty-two children (aged 7 - 11 years) and their primary caregiver participated. Parents were allocated to either a "positive" or a "negative" expectation group. Observations were made of the children and their parents interacting whilst completing a difficult anagram task. Parents given negative expectations of their child's response displayed higher levels of involvement. No differences were found on indices of child mood and behaviour and possible explanations for this are considered. The findings are consistent with suggestions that increased parental involvement may be a "natural" reaction to enhanced perceptions of child vulnerability and an attempt to avoid child distress.
Resumo:
SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.
Resumo:
Purpose – The purpose of this paper is to consider prospects for UK REITs, which were introduced on 1 January 2007. It specifically focuses on the potential influence of depreciation and expenditure on income and distributions. Design/methodology/approach – First, the ways in which depreciation can affect vehicle earnings and value are discussed. This is then set in the context of the specific rules and features of REITs. An analysis using property income and expenditure data from the Investment Property Databank (IPD) then assesses what gross and net income for a UK REIT might have been like for the period 1984-2003. Findings – A UK REIT must distribute at least 90 per cent of net income from its property rental business. Expenditure therefore plays a significant part in determining what funds remain for distribution. Over 1984-2003, expenditure has absorbed 20 per cent of gross income and been a source of earnings volatility, which would have been exacerbated by gearing. Practical implications – Expenditure must take place to help UK REITs maintain and renew their real estate portfolios. In view of this, investors should moderate expectations of a high and stable income return, although it may well still be so relative to alternative investments. Originality/value – Previous literature on depreciation has not quantified amounts spent on portfolios to keep depreciation at those rates. Nor, to our knowledge, has its ideas been placed in the indirect investor context.
Resumo:
The analysis of office market dynamics has generally concentrated on the impact of underlying fundamental demand and supply variables. This paper takes a slightly different approach to many previous examinations of rental dynamics. Within a Vector-Error-Correction framework the empirical analysis concentrates upon the impact of economic and financial variables on rents in the City of London and West End of London office markets. The impulse response and variance decomposition reveal that while lagged rental values and key demand drivers play a highly important role in the dynamics of rents, financial variables are also influential. Stock market performance not only influences the City of London market but also the West End, whilst the default spread plays an important role in recent years. It is argued that both series incorporate expectations about future economic performance and that this is the basis of their influence upon rental values.
Resumo:
An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.
Resumo:
Recent activity in the development of future weather data for building performance simulation follows recognition of the limitations of traditional methods, which have been based on a stationary (observed) climate. In the UK, such developments have followed on from the availability of regional climate models as delivered in UKCIP02 and recently the probabilistic projections released under UKCP09. One major area of concern is the future performance and adaptability of buildings which employ exclusively passive or low-energy cooling systems. One such method which can be employed in an integral or retrofit situation is direct or indirect evaporative cooling. The effectiveness of evaporative cooling is most strongly influenced by the wet-bulb depression of the ambient air, hence is generally regarded as most suited to hot, dry climates. However, this technology has been shown to be effective in the UK, primarily in mixed-mode buildings or as a retrofit to industrial/commercial applications. Climate projections for the UK generally indicate an increase in the summer wet-bulb depression, suggesting an enhanced potential for the application of evaporative cooling. The paper illustrates this potential by an analysis of the probabilistic scenarios released under UKCP09, together with a detailed building/plant simulation of case study building located in the South-East of England. The results indicate a high probability that evaporative cooling will still be a viable low-energy technique in the 2050s.
Resumo:
We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.
Resumo:
High skills are today seen as being of vital importance to economies, industries, companies and individuals. The engineering industry is no exception and the graduate engineer has a key position in this regard. In the research reported in this paper, the authors use in-depth interviews with industry experts to investigate the provision of undergraduate engineering education in the UK. The current and future skill needs of industry are examined. A typology of future engineering roles and their requisite attributes is proposed. Implications for undergraduate engineering are also discussed.
Resumo:
It is estimated that globally over 2 billion people do not have a bank account, with many more in the developed and developing worlds ‘under-banked’, meaning they have limited access to financial services. Reaching the unbanked and underbanked with appropriate financial services is widely recognised as critical for future global economic growth and prosperity. Drawing upon multidimensional understandings of poverty, and framed by literature on poverty pools, traps and cycles, this paper explores the use of financial products and services in the developing world and critically reflects on their potential role in poverty alleviation and wider sustainable development. Discussions are illustrated with reference to qualitative empirical research undertaken in East and Southern Africa, and a sense-making of the lived financial experiences of low income individuals, households and communities.