961 resultados para exotic weeds
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5.Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.
Resumo:
Malva parviflora L. (Malvaceae) is rapidly becoming a serious weed of Australian farming systems. An understanding of the variability of its seed behaviour is required to enable the development of integrated weed management strategies. Mature M. parviflora seeds were collected from four diverse locations in the Mediterranean-type climatic agricultural region of Western Australia. All of the seeds exhibited physical dormancy at collection; manual scarification or a period of fluctuating summer temperatures (50/20 degrees C or natural) were required to release dormancy. When scarified and germinated soon (1 month) after collection, the majority of seeds were able to germinate over a wide range of temperatures (5-37 degrees C) and had no light requirement. Germination was slower for seeds stored for 2 months than seeds stored for 2 years, suggesting the presence of shallow physiological dormancy. Seed populations from regions with similar annual rainfall exhibited similar dormancy release patterns; seeds from areas of low rainfall (337-344mm) were more responsive to fluctuating temperatures, releasing physical dormancy earlier than those from areas of high rainfall (436-444mm). After 36 months, maximum seedling emergence from soil in the field was 60%, with buried seeds producing 13-34% greater emergence than seeds on the surface. Scanning electron microscopy of the seed coat revealed structural differences in the chalazal region of permeable and impermeable seeds, suggesting the importance of this region in physical dormancy breakdown of M. parviflora seeds. The influence of rainfall during plant growth in determining dormancy release, and hence, germination and emergence timing, must be considered when developing management strategies for M. parviflora.