989 resultados para epsilon(Nd)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements are presented of the complex dynamic Young's modulus of NdNiO(3) and Nd(0.65)Eu(0.35)NiO(3) through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed by an abrupt stiffening of similar to 6%. The anomaly is reproducible between cooling and heating in Nd(0.65)Eu(0.35)NiO(3) but appears only as a slow stiffening during cooling in undoped NdNiO(3), in conformance with the fact that the MIT in RNiO(3) changes from strongly first order to second order when the mean R size is decreased. The elastic anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in Nd(0.65)Eu(0.35)NiO(3). It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic Jahn-Teller (JT) distortions through the MIT, where the JT active Ni(3+) is disproportionated into alternating Ni(3+delta) and Ni(3-delta). The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus is estimated as similar to 3% but does not have a role in determining the MIT, since the otherwise-expected precursor softening is not observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3-mu m channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd: YAG lasers. (c) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 <= x <= 1.0 mol%). Their fluorescence quantum efficiency (eta) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Forster-Dexter model of multipolar ion-ion interactions. A maximum eta = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of. on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567091]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd(3+)-doped fluoride glasses. The energy transfer upconversion (gamma(up)) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar gamma(up) parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we performed a thorough spectroscopic and thermo-optical investigation of yttrium aluminoborate glasses doped with neodymium ions. A set of samples, prepared by the conventional melt-quenching technique and with Nd(2)O(3) concentrations varying from 0.1 to 0.75 mol %, were characterized by ground state absorption, photoluminescence, excited state lifetime measurements, and thermal lens technique. For the neodymium emission at 1064 nm ((4)F(3/2) -> (4)I(11/2) transition), no significant luminescence concentration quenching was observed and the experimental lifetime values ranged around 70 mu s. The obtained values of thermal conductivity and diffusivity of approximately 10.3 x 10(-3) W / cm K and 4.0 x 10(-3) cm(2) / s, respectively, are comparable to those of commercial laser glasses. Moreover, the fluorescence quantum efficiency of the glasses, calculated using the Judd-Ofelt formalism and luminescence decay, lies in the range from 0.28 to 0.32, larger than the typical values obtained for Nd(3+) doped YAl(3)(BO(3))(4) crystals. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3176503]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and compositional dependences of thermo- optical properties of neodymium doped yttrium aluminum garnet (YAG) crystals and fine grain ceramics have been systematically investigated by means of time- resolved thermal lens spectrometry. We have found that Nd:YAG ceramics show a reduced thermal diffusivity compared to Nd:YAG single crystals in the complete temperature range investigated (80-300 K). The analysis of the time- resolved luminescent properties of Nd(3+) has revealed that the reduction in the phonon mean free path taking place in Nd:YAG ceramics cannot be associated with an increment in the density of lattice defects, indicating that phonon scattering at grain boundaries is the origin of the observed reduction in the thermal diffusivity of Nd: YAG ceramics. Finally, our results showed the ability of the time- resolved thermal lens to determine and optimize the thermo- optical properties of Nd: YAG ceramic based lasers. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2975335]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formability and stability of the alpha-sialon (alpha') phase was investigated in multi-cation Nd-Li-sialon systems. Four samples were prepared, ranging from a pure Nd-sialon to a pure Li-sialon, with two intermediate samples being prepared with either lithium or neodymium replacing the other alpha'-stabilising additive by 20 eq.%, as to maintain an equivalent design composition in all samples. After sintering, all samples were subsequently heat treated up to 192 h at 1450 and 1300 degreesC. While significant quantities of the beta'-sialon (beta' phase were found in most samples, the high-lithium Li-Nd-sialon sample was found to be almost pure a' phase after sintering. Furthermore, the long-term stability of the a' phase on heat treatment was also found to be superior in both multi-cation samples than in either of the single-alpha'-stabilising-cation samples. This is thought to be related to improved retention of the lithium in the multi-cation systems, as much of the lithium was found to volatilise during sintering in the neodymium-free sample. (C) 2002 Elsevier Science Ltd. All rights reserved.