470 resultados para epicanthic folds
Resumo:
A revision of the deep-water verticordiid genus Spinosipella is provided, based on conchological and anatomical characters. The genus is considered distinct from Verticordia (of which it was considered a subgenus) based on the strong ribs, prickly surface, reduction of lunula, relative large size, weakly spiral valve shape, and other characters. The following species are considered in the genus: (1) Spinosipella agnes new species, ranging from Florida, USA, to Rio de Janeiro, Brazil, and also including the Porcupine Abyssal Plain in the North Atlantic; (2) S. tinga new species, occurring from Rio de Janeiro to Rio Grande do Sul, Brazil; (3) S. acuticostata (Philippi, 1844), a Pliocene fossil from southern Italy; (4) S. deshayesiana (Fischer, 1862), from south and central Indo-Pacific (S. ericia Hedley, 1911, the type species of the genus, was revealed to be a new synonym of S. deshayesiana); and (5) S. costeminens (Poutiers, 1981), from the tropical west Pacific. The five species differ mainly in conchological details of the number and size of ribs, of the prickly sculpture, shape of the shell, of the hinge and the degree of convexity. Anatomical description is also provided for the two Pacific species, which differ among themselves mainly by the size of the pair of renal folds. From the standpoint of anatomical characters, the more significant are: the wide lithodesma; the elongation of the auricles, crossing the roof of pallial cavity; a tall digital fold in posterior region of supraseptal chamber; the low but wide palps; the muscular, gizzard-like stomach; the complete separation of both constituents of the hermaphroditic gonad (a ventro-posterior testicle and a centro-dorsal ovary), and a complete fusion of the visceral ganglia.
Resumo:
The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called finger-like processes and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered finger-like processes, thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and finger-like processes due to hypoactivity, potentially compromising force transmission and joint stability. Microsc. Res. Tech. 75:12921296, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
This Letter reports on the synthesis of Ag-Au nanoparticles (NPs) with controlled structures and compositions via a galvanic replacement reaction between Ag NPs and AuCl4(aq)- followed by the investigation of their optical and catalytic properties. Our results showed the formation of porous walls, hollow interiors and increased Au content in the Ag-Au NPs as the volume of AuCl4(aq)- employed in the reaction was increased. These variations led to a red shift and broadening of the SPR peaks and an increase of up to 10.9-folds in the catalytic activity towards the reduction of 4-nitrophenol relative to Ag NPs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Foraminifera are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved similar to 1 Ga ago. However, the single-chambered agglutinated tests of these protists appear in the fossil record only after ca. 580 Ma, coinciding with the appearance of macroscopic and mineralized animals. Here we report the discovery of small, slender tubular microfossils in the Sturtian (ca. 716-635 Ma) cap carbonate of the Rasthof Formation in Namibia. The tubes are 200-1300 mu m long and 20-70 mu m wide, and preserve apertures and variably wide lumens, folds, constrictions, and ridges. Their sometimes flexible walls are composed of carbonaceous material and detrital minerals. This combination of morphological and compositional characters is also present in some species of modern single-chambered agglutinated tubular foraminiferans, and is not found in other agglutinated eukaryotes. The preservation of possible early Foraminifera in the carbonate rocks deposited in the immediate aftermath of Sturtian low-latitude glaciation indicates that various morphologically modern protists thrived in microbially dominated ecosystems, and contributed to the cycling of carbon in Neoproterozoic oceans much before the rise of complex animals.
Resumo:
The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajo Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajo Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for an area regarded as a passive margin. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Colostrum intake in newborn goat kids is essential for the acquisition of immunoglobulins (Ig) and influencing development of gastrointestinal mucosa. The present study investigated small intestine structure in the postnatal goat kid fed lyophilized bovine colostrum, an alternative source of antibodies to small ruminants, or goat colostrum using scanning electron microscopy technique. At 0,7 and 14 h of life 15 male newborns received 5% of body weight of lyophilized bovine colostrum (LBC) and 14 goat colostrum (GC), both with 55 mg/mL of IgG. Samples of duodenum, medium jejunum and ileum were collected at 18, 36 and 96 h of life. Three animals were sampled at birth without colostrum intake (0 h). The enteric tissues were analyzed for villi density (villi/cm(2)) and morphological characteristics. The villi density did not differ between treatment, sampling time and intestinal segments (P>0.05). The morphological characteristics were not different between LBC and GC in all segments. Duodenal villi were fingerlike, thick and short, and with different heights. Duodenal folds could also be verified. Frequent anastomoses in all sampling times were observed in this segment. In the jejunum, fingerlike villi, thin and thick, of different heights were observed in all sampling times as well as leaf-shaped villi. Vacuoles with colostrum were observed in the jejunum of goats sampled at 18 h of life. In ileum, fingerlike villi were observed in all sampling times. At 0 and 96 h of life, thick and low villi were verified while at 18 and 36 h the villi showed different heights and widths. At all sampling times, regularly cell extrusion processes were observed with grouped cells at the apex of the ileum villi and with isolated cells along the villi. In the first 4 days of goat kids' life the small intestine structure was unaffected by different sources of colostrum, goat or lyophilized bovine, and by the replacement of fetal enterocytes, which are able to absorb macromolecules, by adult-type ones. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The microvascularization of the collared peccary (Tayassu tajacu) placenta was studied by vascular casts and immunolocalization of alpha-smooth muscle actin and vimentin, to identify the three-dimensional organization and vascular flow interrelation in the microvasculature between the maternal and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae. This confers the three-dimensional structure observed in vascular casts. On the maternal side, casts demonstrated uterine folds coated by with primary and secondary ridges, and by areolae dispersed between these ridges. The arteriole runs through the center/middle of ridges, branching at the top into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base of the bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to crosscurrent. The same pattern has been reported in domestic swine demonstrating that, even after 38 million years, the Tayassuidae and Suidae families exhibit similar placental morphology, which is here characterized at the microvascular level.
Resumo:
Background: The bovine yolk sac derives from visceral endoderm and its development occurs between days 18-23 of gestation. The study of this membrane is important for comparative data and has already been performed in rodents, sheep and in cattle, especially Bos taunts. In species Bos indicus the yolk sac has not quite been studied and is believed that there are morphological differences between these species. The yolk sac undergoes a process of involution and degeneration during embryonic development and none vestige of it is found in late gestation. The period in which occurs the involution of the yolk sac coincides with the period of increased pregnancy loss in cattle, and changes in the morphology of this membrane may indicate the reasons for such high loss rates. Thus, considering that the yolk sac is important for embryonic circulation and metabolic transmission, besides participating actively in the process of cattle placentation, this study aimed characterize morphologically the involution of the bovine yolk sac. Materials, Methods & Results: The early gestational period was determined between days 20 and 70 post-insemination (p.i), according to the exterior characteristics of embryo/fetus. For macroscopic analyzes the uterus was dissected to expose the fetal membranes and subsequently the embryo/fetus was photographed. The samples were fixed for light microscopy and transmission electron microscopy. The yolk sac that emerges from the ventral part of the embryo was prominent and composed by a central part with two thin peripheral projections of different lengths. The bovine yolk sac with about 9 cm on day 25 p. i. of pregnancy permanently decreased its total length during this study. Histologically, the yolk sac is composed of three cell layers: the mesothelium, the mesenchyme and the endoderm. In mesenchyme are found blood islets. In the endoderm are formed cells invaginations toward the mesenchyme originating small canaliculi. The ultrastructure of yolk cells presented many mitochondria, rough endoplasmic reticulum, vesicles, euchromatin and the presence of two nucleoli, Discussion: The real first blood circulation in the bovine is attached with the development of yolk sac, differently from other membranes, such as the corium, that does not present evidence of vascularization by the age of 20-30 days. The erythroblasts found in the yolk sac are related to vasculogenesis and the process of differentiation of blood cells during the erythropoiesis. It could be observed on the histology of the yolk sac, in embryos of 30-50 days old, the presence of canaliculi and small folds of the epithelium. The canaliculi collapse is associated with the degeneration of the endoderm wall of the yolk sac. The organelles present in the endoderm cells of the yolk sac are associated with the function of protein metabolism and in the exchange of substances between the mesenchyme and the mesothelium, For these findings, could be observed that the yolk sac epithelium is found active until the 50th day of gestation, and thereafter regresses. However, remnants of this membrane may be present until the 70th day, These features may represent a presence of an active chorionvitelline placenta in this period responsible for the maintenance of pregnancy whereas the chorioallantoic placenta is not definitively established.
Resumo:
Background: To investigate indocyanine green angiography (ICGA) findings in patients with long-standing Vogt-Koyanagi-Harada (VKH) disease and their correlation with disease activity on clinical examination as well as with systemic corticosteroid therapy. Methods: Twenty-eight patients (51 eyes) with long-standing (>= 6 months from disease onset) VKH disease whose treatment was tapered based only in clinical features were prospectively included at a single center in Brazil. All patients underwent standardized clinical evaluation, which included fundus photography, fluorescein angiography and ICGA. Clinical disease activity was determined based in the Standardization in Uveitis Nomenclature Working Group. Fisher exact test and logistic regression models were used for statistical analysis. Results: Disease-related choroidal inflammation on ICGA was observed in 72.5% (31 of 51 eyes). Angiographic findings suggestive of (choroidal and/or retinal) disease activity were not observed on FA. Clinically active disease based on clinical evaluation was observed in 41.2% (21 of 51 eyes). In these 21 eyes, disease-related choroidal inflammation on ICGA was observed in 76.2% (16 of 21 eyes); in the remaining eyes (without clinical active disease) disease-related choroidal inflammation on ICGA was observed in 70.0% (21 of 30 eyes). In respect to systemic corticosteroid therapy, 10 patients (18 of 51 eyes) were under treatment with prednisone. In these 10 (18 of 51 eyes) patients, disease-related choroidal inflammation on ICGA was observed in 83.3% (15 of 18 eyes); in the remaining patients (33 of 51 eyes) disease-related choroidal inflammation on ICGA was observed in 66.7% (22 of 33 eyes). Conclusion: ICGA findings suggestive of disease-related choroidal inflammation were observed in a considerable proportion of patients with long-standing VKH disease, independent of the inflammatory status of the disease on clinical examination or current use of systemic corticosteroid. Therefore, the current study reinforces the crucial role of ICGA to assist the management and treatment of patients with long-standing VKH disease.
Resumo:
The aim of this study was to analyze the rat temporomandibular joint (TMJ) synovial membrane at different ages using light, scanning, and transmission electron microscopy. Under light microscopic analysis, the TMJ structures were observed such as condyle, capsule, disk, the synovial membrane collagen type, and cells distribution. In the scanning electron microscopy, the synovial membrane surface exhibited a smooth aspect in young animals and there was an increase with ageing in the number of folds. The transmission electron microscopic analysis showed more synoviocytes in the synovial layer in the young group and still a great number of vesicles and cisterns dilation of rough endoplasmic reticulum in the aged group. In the three groups, a dense layer of collagen fibers in the synovial layer and cytoplasmic extensions were clearly seen. It was possible to conclude that synovial membrane structures in aged group showed alterations contributing to the decrease in joint lubrication and in the sliding between disk and joint surfaces. These characteristic will reflect in biomechanics of chewing, and may cause the TMJ disorders, currently observed in clinical processes. Microsc. Res. Tech. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Objectives/Hypothesis. Hepatocyte growth factor (HGF) is a multifunctional polypeptide that plays various roles in embryogenesis and tissue regeneration and exhibits marked antifibrotic activity. The present study sought to assess the effects of HGF injection and reinjection coinciding with its peak of activity on collagen density, vessel density, inflammatory reaction in the lamina propria, and mean epithelial thickness in the injured rabbit vocal fold. Study Design. Prospective, controlled, experimental animal study. Methods. Fourteen rabbits were subdivided into two groups and underwent injury of the vocal folds. Immediately after injury, animals in group 1 received HGF injections into the right vocal fold (RVF), whereas those in group 2 received bilateral HGF injections and a single reinjection into the RVF 10 days after the first, to coincide with the peak of HGF activity. The left vocal folds (LVFs) served as controls in both groups. Histological assessment of laryngeal specimens was performed at 30 and 40 days, respectively. Results. In both groups, collagen density was lower in the right (treated) vocal folds than in the left (control) folds (P = 0.018). Vessel density was higher in the RVFs in group 2 (P = 0.018). Differences were found in mean epithelial thickness and inflammatory reaction in the lamina propria but did not reach statistical significance. Conclusions. In the scarred rabbit vocal fold, HGF injection is associated with decreased collagen density in the lamina propria, whereas reinjection after 10 days produces decreased collagen density and higher vessel density.
Resumo:
The aim this work was to compare the distribution of cellular phenotypes of the LF in the FVC to the ones in the subglottic region in pediatric autopsy, relating this distribution to age and different causes of death. We analyzed 60 larynges of newborns and children autopsied in the period from 1993 to 2003. The fragments were prepared in order to perform histochemical and immunohistochemical techniques. The morphological analysis showed cases that presented LF only in FVC (35%), LF only in the subglottic region (20%), lack of LF in FVC (30%) and lymphoid aggregates, which did not characterize an LF (15%). The cases of LF in the subglottic region were significantly younger compared to the ones that presented LF in the FVC (p = 0.017). The LF in the subglottic region was bigger than the LF in the FVC (p = 0.020). There was no significant difference between the cause of death and cellular phenotype for both FVC and the subglottic region. In conclusion, the cells that make up the LF in the FVC in newborns and children younger than one year have functional characteristics similar to LF cells in the subglottic region, suggesting that there are similarities with LALT. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.
Resumo:
The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.