987 resultados para environment measurements
Resumo:
The three-dimensional solution structure of the 40 residue amyloid beta-peptide, A beta(1-40), has been determined using NMR spectroscopy at pH 5.1, in aqueous sodium dodecyl sulfate (SDS) micelles, In this environment, which simulates to some extent a water-membrane medium, the peptide is unstructured between residues 1 and 14 which are mainly polar and likely solvated by water. However, the rest of the protein adopts an alpha-helical conformation between residues 15 and 36 with a kink or hinge at 25-27. This largely hydrophobic region is likely solvated by SDS. Based on the derived structures, evidence is provided in support of a possible new location for the transmembrane domain of A beta within the amyloid precursor protein (APP). Studies between pH 4.2 and 7.9 reveal a pH-dependent helix-coil conformational switch. At the lower pH values, where the carboxylate residues are protonated, the helix is uncharged, intact, and lipid-soluble. As the pH increases above 6.0, part of the helical region (15-24) becomes less structured, particularly near residues E22 and D23 where deprotonation appears to facilitate unwinding of the helix. This pH-dependent unfolding to a random coil conformation precedes any tendency of this peptide to aggregate to a beta-sheet as the pH increases. The structural biology described herein for A beta(1-40) suggests that (i) the C-terminal two-thirds of the peptide is an alpha-helix in membrane-like environments, (ii) deprotonation of two acidic amino acids in the helix promotes a helix-coil conformational transition that precedes aggregation, (iii) a mobile hinge exists in the helical region of A beta(1-40) and this may be relevant to its membrane-inserting properties and conformational rearrangements, and (iv) the location of the transmembrane domain of amyloid precursor proteins may be different from that accepted in the Literature. These results may provide new insight to the structural properties of amyloid beta-peptides of relevance to Alzheimer's disease.
Resumo:
We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement backaction noise alone.
Resumo:
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation. [S0031-9007(98)07671-6].
Resumo:
There are some interesting connections between the theory of quantum computation and quantum measurement. As an illustration, we present a scheme in which an ion trap quantum computer can be used to make arbitrarily accurate measurements of the quadrature phase variables for the collective vibrational motion of the ion. We also discuss some more general aspects of quantum computation and measurement in terms of the Feynman-Deutsch principle.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Recent advances in the application of bioelectrical impedance analysis (BIA) have indicated that a more accurate approach to the estimation of total body water is to consider the impedance of the various body segments rather than simply that of the whole body. The segmental approach necessitates defining and locating the physical demarcation between both the trunk and leg and the trunk and arm. Despite the use of anatomical markers, these points of demarcation are difficult to locate with precision between subjects. There are also technical problems associated with the regional dispersion of the current distribution from one segment (cylinder) to another of different cross-sectional area. The concept of equipotentials in line with the proximal aspects of the upper land lower) limbs along the contralateral limbs was investigated and, in particular, the utility of this concept in the measurement of segmental bioimpedance. The variation of measured segmental impedance using electrode sites along these equipotentials was less than 2.0% for all of the commonly used impedance parameters. This variation is approximately equal to that expected from biological variation over the measurement time. It is recommended that the electrode sites, for the measurement of segmental bioelectrical impedance in humans, described herein are adopted in accordance with the proposals of the NM Technology Assessment Conference Statement.
Resumo:
This is the first paper in a study on the influence of the environment on the crack tip strain field for AISI 4340. A stressing stage for the environmental scanning electron microscope (ESEM) was constructed which was capable of applying loads up to 60 kN to fracture-mechanics samples. The measurement of the crack tip strain field required preparation (by electron lithography or chemical etching) of a system of reference points spaced at similar to 5 mu m intervals on the sample surface, loading the sample inside an electron microscope, image processing procedures to measure the displacement at each reference point and calculation of the strain field. Two algorithms to calculate strain were evaluated. Possible sources of errors were calculation errors due to the algorithm, errors inherent in the image processing procedure and errors due to the limited precision of the displacement measurements. Estimation of the contribution of each source of error was performed. The technique allows measurement of the crack tip strain field over an area of 50 x 40 mu m with a strain precision better than +/- 0.02 at distances larger than 5 mu m from the crack tip. (C) 1999 Kluwer Academic Publishers.
Resumo:
Crack tip strain maps have been measured for AISI 4340 high strength steel. No significant creep was observed. The measured values of CTOD were greater than expected from the HRR model. Crack tip branching was observed in every experiment. The direction of crack branching was in the same direction as a major ridge'' of epsilon(yy) strain, which in turn was in the same direction as predicted by the HRR model. Furthermore, the measured magnitudes of the epsilon(y)y strain in this same direction were in general greater than the values predicted by the HRR model. This indicates more plasticity in the crack tip region than expected from the HRR model. This greater plasticity could be related to the larger than expected CTOD values. The following discrepancies between the measured strain fields for AISI 4340 and the HRR predictions are noteworthy: (1) The crack branching. (2) Values of CTOD significantly higher than predicted by HRR. (3) The major ridge'' of epsilon(yy) strain an angle of about 60 degrees with the direction of overall propagation of the fatigue precrack, in which the measured magnitudes of the epsilon(yy) strain were greater than the values predicted by the HRR model. (4) Asymmetric shape of the plastic zone as measured by the epsilon(yy) strain. (5) Values of shear strain gamma(xy) significantly higher than predicted by the HRR model. (C) 1999 Kluwer Academic Publishers.
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
Background, Regular physical activity in older adults can facilitate healthy aging, improve functional capacity, and prevent disease. However, factors associated with physical inactivity in older populations are poorly understood. This study attempts to identify social-cognitive and perceived environmental influences associated with physical activity participation in older populations. Methods. In a randomly selected sample of 449 Australian adults age 60 and older, we assessed self-reported physical activity and a range of social-cognitive and perceived environmental factors. Respondents were classified as sufficiently active and inactive based on energy expenditure estimates (kcal/week) derived from self-reported physical activity. Two logistic regression models, with and without self-efficacy included, were conducted to identify modifiable independent predictors of physical activity. Results. Significantly more males than females were physically active. Physical activity participation was related to age with a greater proportion of those age 65-69 being active than those age 60-64 or 70 or older. High self-efficacy, regular participation of friends and family, finding footpaths safe for walking, and access to local facilities were significantly associated with being active. Conclusion. Identifying predictors of physical activity in older populations, particularly social support, facility access, and neighbourhood safety, can inform the development of policy and intervention strategies to promote the health of older people. (C) 2000 American Health Foundation and Academic Press.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
We propose an absorptive measurement scheme via coupled quantum dots based on studies of the quantum dynamics of coherently coupled dots. The system is described through a Markov master equation that is related to a measurable quantity, the current. We analyse the measurement configuration and calculate the correlations and noise spectra beyond the adiabatic approximation.
Resumo:
The World Wide Web (WWW) is useful for distributing scientific data. Most existing web data resources organize their information either in structured flat files or relational databases with basic retrieval capabilities. For databases with one or a few simple relations, these approaches are successful, but they can be cumbersome when there is a data model involving multiple relations between complex data. We believe that knowledge-based resources offer a solution in these cases. Knowledge bases have explicit declarations of the concepts in the domain, along with the relations between them. They are usually organized hierarchically, and provide a global data model with a controlled vocabulary, We have created the OWEB architecture for building online scientific data resources using knowledge bases. OWEB provides a shell for structuring data, providing secure and shared access, and creating computational modules for processing and displaying data. In this paper, we describe the translation of the online immunological database MHCPEP into an OWEB system called MHCWeb. This effort involved building a conceptual model for the data, creating a controlled terminology for the legal values for different types of data, and then translating the original data into the new structure. The 0 WEB environment allows for flexible access to the data by both users and computer programs.