527 resultados para ensembles
Resumo:
A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.
Resumo:
While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.
Resumo:
Simulation models are widely employed to make probability forecasts of future conditions on seasonal to annual lead times. Added value in such forecasts is reflected in the information they add, either to purely empirical statistical models or to simpler simulation models. An evaluation of seasonal probability forecasts from the Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER) and ENSEMBLES multi-model ensemble experiments is presented. Two particular regions are considered: Nino3.4 in the Pacific and the Main Development Region in the Atlantic; these regions were chosen before any spatial distribution of skill was examined. The ENSEMBLES models are found to have skill against the climatological distribution on seasonal time-scales. For models in ENSEMBLES that have a clearly defined predecessor model in DEMETER, the improvement from DEMETER to ENSEMBLES is discussed. Due to the long lead times of the forecasts and the evolution of observation technology, the forecast-outcome archive for seasonal forecast evaluation is small; arguably, evaluation data for seasonal forecasting will always be precious. Issues of information contamination from in-sample evaluation are discussed and impacts (both positive and negative) of variations in cross-validation protocol are demonstrated. Other difficulties due to the small forecast-outcome archive are identified. The claim that the multi-model ensemble provides a ‘better’ probability forecast than the best single model is examined and challenged. Significant forecast information beyond the climatological distribution is also demonstrated in a persistence probability forecast. The ENSEMBLES probability forecasts add significantly more information to empirical probability forecasts on seasonal time-scales than on decadal scales. Current operational forecasts might be enhanced by melding information from both simulation models and empirical models. Simulation models based on physical principles are sometimes expected, in principle, to outperform empirical models; direct comparison of their forecast skill provides information on progress toward that goal.
Resumo:
In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Resumo:
Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.
Resumo:
The spatial pattern of precipitation variability in tropical and subtropical Africa over the late Quaternary has long been debated. Prevailing hypotheses variously infer (1) insolation-controlled asymmetry of wet phases between hemispheres, (2) symmetric contraction and expansion of the tropical rainbelt, and (3) independent control on moisture available in Southern Africa via sea surface temperatures in the Indian Ocean. In this study we use climate-model simulations covering the last glacial cycle (120 kyr) with HadCM3 and the multi-model ensembles from PMIP3 (the Palaeoclimate Model Intercomparison Project) to investigate the long-term behaviour of the African rainbelt, and test these simulations against existing empirical palaeohydrological records. Through regional model-data comparisons we find evidence for the validity of several hypotheses, with various proposed processes occurring concurrently but with different regional emphasis (e.g. asymmetric shifts at the seasonal extremes and symmetric expansions/ contractions towards West equatorial regions). Crucially, variations in rainfall are associated with multiple forcing mechanisms that vary in their dominance both spatially and temporally over the glacial cycle; an important consideration when interpreting and extrapolating from often relatively short palaeoenvironmental records.
Resumo:
Temperature is a key variable for monitoring global climate change. Here we perform a trend analysis of Swiss temperatures from 1959 to 2008, using a new 2 × 2 km gridded data-set based on carefully homogenised ground observations from MeteoSwiss. The aim of this study is twofold: first, to discuss the spatial and altitudinal temperature trend characteristics in detail, and second, to quantify the contribution of changes in atmospheric circulation and local effects to these trends. The seasonal trends are all positive and mostly significant with an annual average warming rate of 0.35 °C/decade (∼1.6 times the northern hemispheric warming rate), ranging from 0.17 in autumn to 0.48 °C/decade in summer. Altitude-dependent trends are found in autumn and early winter where the trends are stronger at low altitudes (<800 m asl), and in spring where slightly stronger trends are found at altitudes close to the snow line. Part of the trends can be explained by changes in atmospheric circulation, but with substantial differences from season to season. In winter, circulation effects account for more than half the trends, while this contribution is much smaller in other seasons. After removing the effect of circulation, the trends still show seasonal variations with higher values in spring and summer. The circulation-corrected trends are closer to the values simulated by a set of ENSEMBLES regional climate models, with the models still tending towards a trend underestimation in spring and summer. Our results suggest that both circulation changes and more local effects are important to explain part of recent warming in spring, summer, and autumn. Snow-albedo feedback effects could be responsible for the stronger spring trends at altitudes close to the snow line, but the overall effect is small. In autumn, the observed decrease in fog frequency might be a key process in explaining the stronger temperature trends at low altitudes.
Resumo:
A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods (2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general, signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and also between future periods and scenarios within single models. This study showed for an ensemble of 22 CMIP5 models that changes in the wind energy potentials over Europe may take place in future decades. However, due to the uncertainties detected in this research, further investigations with multi-model ensembles are needed to provide a better quantification and understanding of the future changes.
Resumo:
Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified.
Resumo:
The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.
Resumo:
This study explores the decadal potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) as represented in the IPSL-CM5A-LR model, along with the predictability of associated oceanic and atmospheric fields. Using a 1000-year control run, we analyze the prognostic potential predictability (PPP) of the AMOC through ensembles of simulations with perturbed initial conditions. Based on a measure of the ensemble spread, the modelled AMOC has an average predictive skill of 8 years, with some degree of dependence on the AMOC initial state. Diagnostic potential predictability of surface temperature and precipitation is also identified in the control run and compared to the PPP. Both approaches clearly bring out the same regions exhibiting the highest predictive skill. Generally, surface temperature has the highest skill up to 2 decades in the far North Atlantic ocean. There are also weak signals over a few oceanic areas in the tropics and subtropics. Predictability over land is restricted to the coastal areas bordering oceanic predictable regions. Potential predictability at interannual and longer timescales is largely absent for precipitation in spite of weak signals identified mainly in the Nordic Seas. Regions of weak signals show some dependence on AMOC initial state. All the identified regions are closely linked to decadal AMOC fluctuations suggesting that the potential predictability of climate arises from the mechanisms controlling these fluctuations. Evidence for dependence on AMOC initial state also suggests that studying skills from case studies may prove more useful to understand predictability mechanisms than computing average skill from numerous start dates.
Resumo:
Identifying predictability and the corresponding sources for the western North Pacific (WNP) summer climate in the case of non-stationary teleconnections during recent decades benefits for further improvements of long-range prediction on the WNP and East Asian summers. In the past few decades, pronounced increases on the summer sea surface temperature (SST) and associated interannual variability are observed over the tropical Indian Ocean and eastern Pacific around the late 1970s and over the Maritime Continent and western–central Pacific around the early 1990s. These increases are associated with significant enhancements of the interannual variability for the lower-tropospheric wind over the WNP. In this study, we further assess interdecadal changes on the seasonal prediction of the WNP summer anomalies, using May-start retrospective forecasts from the ENSEMBLES multi-model project in the period 1960–2005. It is found that prediction of the WNP summer anomalies exhibits an interdecadal shift with higher prediction skills since the late 1970s, particularly after the early 1990s. Improvements of the prediction skills for SSTs after the late 1970s are mainly found around tropical Indian Ocean and the WNP. The better prediction of the WNP after the late 1970s may arise mainly from the improvement of the SST prediction around the tropical eastern Indian Ocean. The close teleconnections between the tropical eastern Indian Ocean and WNP summer variability work both in the model predictions and observations. After the early 1990s, on the other hand, the improvements are detected mainly around the South China Sea and Philippines for the lower-tropospheric zonal wind and precipitation anomalies, associating with a better description of the SST anomalies around the Maritime Continent. A dipole SST pattern over the Maritime Continent and the central equatorial Pacific Ocean is closely related to the WNP summer anomalies after the early 1990s. This teleconnection mode is quite predictable, which is realistically reproduced by the models, presenting more predictable signals to the WNP summer climate after the early 1990s.