697 resultados para enjoyment of exercise
Resumo:
Physical exercise is recommended for all healthy pregnant women. Regular practice of exercises during pregnancy can provide many physical and psychological benefits, with no evidence of adverse outcomes for the fetus or the newborn when exercise is performed at mild to moderate intensity. However, few pregnant women engage in this practice and many still have fears and doubts about the safety of exercise. The objective of the present study was to inform the professionals who provide care for Brazilian pregnant women about the current recommendations regarding physical exercise during pregnancy based on the best scientific evidence available. In view of the perception that few systematic models are available about this topic and after performing several studies in this specific area, we assembled practical information of interest to both the professionals and the pregnant women. We also provide recommendations about the indications, contraindications, modalities (aerobics, resistance training, stretching and pelvic floor training), frequency, intensity and duration indicated for each gestational trimester. The review addresses physical exercise recommendation both for low risk pregnant women and for special populations, such as athletes and obese, hypertensive and diabetic subjects. The advantages of an active and healthy lifestyle should be always reinforced during and after gestation since pregnancy is an appropriate period to introduce new habits because pregnant women are usually more motivated to adhere to recommendations. Thus, routine exams, frequent returns and supervision are recommended in order to provide new guidelines that will have long-term beneficial effects for both mother and child.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Background: Patients with juvenile dermatomyositis (JDM) often present strong exercise intolerance and muscle weakness. However, the role of exercise training in this disease has not been investigated. Purpose: this longitudinal case study reports on the effects of exercise training on a 7-year-old patient with JDM and on her unaffected monozygotic twin sister, who served as a control. Methods: Both the patient who was diagnosed with JDM as well as her healthy twin underwent a 16-week exercise training program comprising aerobic and strengthening exercises. We assessed one repetition-maximum (1-RM) leg-press and bench-press strength, balance, mobility and muscle function, blood markers of inflammation and muscle enzymes, aerobic conditioning, and disease activity scores. As a result, the healthy child had an overall greater absolute strength, muscle function and aerobic conditioning compared to her JDM twin pair at baseline and after the trial. However, the twins presented comparable relative improvements in 1-RM bench press, 1-RM leg press, VO(2peak), and time-to-exhaustion. The healthy child had greater relative increments in low-back strength and handgrip, whereas the child with JDM presented a higher relative increase in ventilatory anaerobic threshold parameters and functional tests. Quality of life, inflammation, muscle damage and disease activity scores remained unchanged. Results and Conclusion: this was the first report to describe the training response of a patient with non-active JDM following an exercise training regimen. The child with JDM exhibited improved strength, muscle function and aerobic conditioning without presenting an exacerbation of the disease.
Resumo:
Purpose: The aim of this study was to verify the influence of aerobic fitness (VO(2)max) on internal training loads, as measured by the session rating of perceived exertion (session-RPE) method. Methods: Nine male professional outfield futsal players were monitored for 4 wk of the in-season period with regards to the weekly accumulated session-RPE, while participating in the same training sessions. Single-session-RPE was obtained from the product of a 10-point RPE scale and the duration of exercise. Maximal oxygen consumption was determined during an incremental treadmill test. Results: The average training load throughout the 4 wk period varied between 2,876 and 5,035 arbitrary units. Technical-tactical sessions were the predominant source of loading. There was a significant correlation between VO(2)max (59.6 +/- 2.5 mL.kg(-1).min(-1)) and overall training load accumulated over the total period (r = -0.75). Conclusions: The VO(2)max plays a key role in determining the magnitude of an individual's perceived exertion during futsal training sessions.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Exercise intensity is a key parameter for exercise prescription but the optimal range for individuals with high cardiorespiratory fitness is unknown. The aims of this study were (1) to determine optimal heart rate ranges for men with high cardiorespiratory fitness based on percentages of maximal oxygen consumption (%VO(2max)) and reserve oxygen consumption (%VO(2reserve)) corresponding to the ventilatory threshold and respiratory compensation point, and ( 2) to verify the effect of advancing age on the exercise intensities. Maximal cardiorespiratory testing was performed on 210 trained men. Linear regression equations were calculated using paired data points between percentage of maximal heart rate (%HR(max)) and %VO(2max) and between percentage of heart rate reserve (%HRR) and %VO(2reserve) attained at each minute during the test. Values of %VO(2max) and %VO(2reserve) at the ventilatory threshold and respiratory compensation point were used to calculate the corresponding values of %HRmax and %HRR, respectively. The ranges of exercise intensity in relation to the ventilatory threshold and respiratory compensation point were achieved at 78-93% of HR(max) and 70-93% of HRR, respectively. Although absolute heart rate decreased with advancing age, there were no age-related differences in %HR(max) and %HRR at the ventilatory thresholds. Thus, in men with high cardiorespiratory fitness, the ranges of exercise intensity based on %HR(max) and %HRR regarding ventilatory threshold were 78-93% and 70-93% respectively, and were not influenced by advancing age.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.
Resumo:
Brennecke, A, Guimaraees, TM, Leone, R, Cadarci, M, Mochizuki, L, Simao, R, Amadio, AC, and Serrao, J. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res 23(7): 1933-1940, 2009-The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e. g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.
Resumo:
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Resumo:
The hypothesis that salivary cortisol would increase and salivary immunoglobulin A (IgA) decrease after a kickboxing match was tested among 20 male athletes. Saliva samples collected before and after the match were analyzed. Salivary cortisol and salivary IgA concentrations (absolute concentration, salivary IgAabs) and the secretion rate of IgA (salivary IgArate) were measured by enzyme-linked immunosorbent assay. A Wilcoxon test for paired samples showed significant increases in salivary cortisol from pre- to postmatch. No significant changes were observed in salivary IgAabs or secretory IgArate and saliva flow rate. This study indicates that a kickboxing match might increase salivary concentration and thereafter it could be considered a significant source of exercise-related stress. On the other hand, the effect of a kickboxing match on mucosal immunity seems not to be relevant.
Resumo:
This study tested the concurrent and construct validity of a newly developed OMNI-Kayak Scale, testing 8 male kayakers who performed a flatwater load-incremented ""shuttle"" test over a 500-m course and 3 estimation-production trials over a 1,000-m course. Velocity, blood lactate concentration, heart rate, and rating of perceived exertion (RPE), using the OMNI-Kayak RPE Scale and the Borg 6-20 Scale were recorded. OMNI-Kayak Scale RPE was highly correlated with velocity, the Borg 6-20 Scale RPE, blood lactate, and heart rate for both load-incremented test (rs=.87-.96), and estimation trials (rs=.75-.90). There were no significant differences among velocities, heart rate and blood lactate concentration between estimation and production trials. The OMNI-Kayak RPE Scale showed concurrent and construct validity in assessing perception of effort in flatwater kayaking and is a valid tool for self-regulation of exercise intensity.
Resumo:
This investigation examined the impact of a 17-d training period (that included basketball-specific training, sprints, intermittent running exercises, and weight training, prior to an international championship competition) on salivary immunoglobulin A (SIgA) levels in 10 subjects (athletes and staff members) from a national basketball team, as a biomarker for mucosal immune defence. Unstimulated saliva samples were collected at rest at the beginning of the preparation for the Pan American Games and 1 d before the first game. The recovery interval from the last bout of exercise was 4 h. The SIgA level was measured using enzyme-linked immunosorbent assay and expressed as absolute concentrations, secretion rate, and SIgA level relative to total protein. The decrease in SIgA levels following training was greater in athletes than in support staff; however, no significant differences between the two groups were detected. A decrease in SIgA level, regardless of the method used to express IgA results, was verified for athletes. Only one episode of upper respiratory tract illness symptoms was reported, and it was not associated with changes in SIgA levels. In summary, a situation of combined stress for an important championship was found to decrease the level of SIgA-mediated immune protection at the mucosal surface in team members, with greater changes observed in the athletes.
Resumo:
Pinto, ALS, Oliveira, NC, Gualano, B, Christmann, RB, Painelli, VS, Artioli, GG, Prado, DML, and Lima, FR. Efficacy and safety of concurrent training in systemic sclerosis. J Strength Cond Res 25(5): 1423-1428, 2011-The optimal training model for patients with systemic sclerosis (SSc) is unknown. In this study, we aimed to investigate the effects of a 12-week combined resistance and aerobic training program (concurrent training) in SSc patients. Eleven patients with no evidence of pulmonary involvement were recruited for the exercise program. Lower and upper limb dynamic strengths (assessed by 1 repetition maximum [1RM] of a leg press and bench press, respectively), isometric strength (assessed by back pull and handgrip tests), balance and mobility (assessed by the timed up-and-go test), muscle function (assessed by the timed-stands test), Rodnan score, digital ulcers, Rayland`s phenomenon, and blood markers of muscle inflammation (creatine kinase and aldolase) were assessed at baseline and after the 12-week program. Exercise training significantly enhanced the 1RM leg press (41%) and 1RM bench press (13%) values and back pull (24%) and handgrip strength (11%). Muscle function was also improved (15%), but balance and mobility were not significantly changed. The time-to-exhaustion was increased (46.5%, p = 0.0004), the heart rate at rest condition was significantly reduced, and the workload and time of exercise at ventilatory thresholds and peak of exercise were increased. However, maximal and submaximal (V)over dotO(2) were unaltered (p > 0.05). The Rodnan score was unchanged, and muscle enzymes remained within normal levels. No change was observed in digital ulcers and Raynaud`s phenomenon. This is the first study to demonstrate that a 12-week concurrent training program is safe and substantially improves muscle strength, function, and aerobic capacity in SSc patients.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.