890 resultados para endothelial cell


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action.

Experimental Design: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status.

Results: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype.

Conclusion: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H( P) ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 mug/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI ( GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H( P) ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H( P) ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P) ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

http://bjo.bmj.com/content/suppl/2001/06/20/85.7.DC1 Leukocyte-endothelial cell interactions play an important role in the pathogenesis of various types of retinal vascular diseases, including diabetes, uveitis, and ischemic lesions. Over the last few years, several methods have been devised in which the scanning laser ophthalmoscope (SLO) is used to study leukocyte-endothelial interactions in vivo [1,2]. Previously we reported a noninvasive in vivo leukocyte tracking method using the SLO in rat. In this method, a nontoxic fluorescent agent (6-carboxyfluorescein diacetate, CFDA) was used to label leukocytes in vitro. Leukocyte velocities within the retinal and choroidal circulations were be quantified simultaneously [3]. None of the previous methods has been developed for imaging the murine fundus, mainly due to problems arising from the small size of the mouse eye. However, there are many advantages of using a murine model to study retinal vascular diseases such as enhanced genetic definition, increased range of reagents available for immunological studies and cost reduction. We have developed our SLO method such that we can track leukocytes in the mouse retinal and choroidal circulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review considers the effects of ionizing radiation on the retina and examines the relationship between the natural course of radiation retinopathy and the radiobiology of the retinal vascular endothelial cell (RVEC). Radiation retinopathy presents clinically as a progressive pattern of degenerative and proliferative vascular changes, chiefly affecting the macula, and ranging from capillary occlusion, dilation, and microaneurysm formation, to telangiectasia, intraretinal microvascular abnormalities, and neovascularization. The total-radiation dose and fractionation schedule are the major determinants for the time of onset, rate of progression, and severity of retinopathy, although other factors such as concomitant chemotherapy and preexisting diabetes may exaggerate the vasculopathy by intensifying the oxygen-derived free-radical assault on the vascular cells. The differential radiosensitivity of RVECs is attributed to their nuclear chromatin conformation, their antioxidant status, and their environment. We propose pathogenetic mechanisms for radiation retinopathy and suggest that the peculiar latency and unique clinical pattern is related to the life cycle of the RVEC. A rationale is also proposed for the use of radiotherapy in the treatment of subneovascularization and age-related macular degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of the highly vasoactive peptide endothelin 1 (ET1) was tested on bovine retinal microvascular pericytes propagated in vitro. Specific binding of 125I-ET1 to retinal pericytes was documented by autoradiography. ET1 caused contraction of pericytes at a concentration of 0.1 nM which was accompanied by increases in inositol phosphates. Exposure of pericytes to 10 nM ET1 resulted in the aggregation and realignment of muscle-specific actins into bundles which were oriented parallel to the long axis of the cell, and ET1 was also mitogenic to pericytes in the presence of low levels of fetal calf serum. These observations suggest that ET1 may play an important role in endothelial cell-pericyte interactions within the microvasculature of the retina and that it may be involved in the autoregulation of retinal blood flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical, pathological and experimental studies of radiation retinopathy confirm that the primary vascular event is endothelial cell loss and capillary closure. Pericytes are less susceptible, but typically atrophy as the capillaries become non-functional. The immediate effects of radiation reflect interphase and early mitotic death of injured endothelial cells, whereas later changes may be attributed to delayed mitotic death of compromised endothelial cells as they attempt division in the ordinary course of repair and replacement. Capillary occlusion leads to the formation of dilated capillary collaterals which may remain serviceable and competent for years. Microaneurysms develop in acellular and poorly supported capillaries, predominantly on the arterial side of the circulation and adjacent to regions of poorly perfused retina. Alterations in haemodynamics produce large telangiectatic-like channels which, typically develop a thick collagenous adventitia and may become fenestrated. Limited capillary regeneration occurs, usually evident as recanalisation of arterioles or venules by new capillaries. Vitreo-retinal neovascularisation may occur where retinal ischaemia is widespread. Radiation produces an exaggerated vasculopathy in patients with diabetes mellitus, and five month streptozotocin-induced diabetic rats develop a severe ischaemic retinopathy with vitreoretinal neovascularisation when exposed to 1500 cGy of radiation. Later photocoagulation is useful in containing or reversing microvascular incompetence and vasoproliferation in some patients with advanced radiation retinopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proliferative Diabetic Retinopathy (PDR) and Eales' Disease (ED) have different aetiologies although they share certain common clinical symptoms including pre-retinal neovascularization. Since there is a need to understand if the shared end-stage angiogenic pathology of PDR and ED is driven by common stimulating factors, we have studied the cytokines contained in vitreous from both patient groups and analyzed the angiogenic potential of these samples in vitro.

Material and Methods

Vitreous samples from patients with PDR (n = 13) and ED (n = 5) were quantified for various cytokines using a cytokine biochip array and sandwich ELISA. An additional group of patients (n = 5) with macular hole (MH) was also studied for comparison. To determine the angiogenic potential of these vitreous samples, they were analyzed for their ability to induce tubulogenesis in human microvascular endothelial cells. Further, the effect of anti-VEGF (Ranibizumab) and anti-IL-6 antibodies were studied on vitreous-mediated vascular tube formation.

Results

Elevated levels of IL-6, IL-8, MCP-1 and VEGF were observed in vitreous of both PDR and ED when compared to MH. PDR and ED vitreous induced greater levels of endothelial cell tube formation compared to controls without vitreous (P<0.05). When VEGF in vitreous was neutralized by clinically-relevant concentrations of Ranibizumab, tube length was reduced significantly in 5 of 6 PDR and 3 of 5 ED samples. Moreover, when treated with IL-6 neutralizing antibody, apparent reduction (71.4%) was observed in PDR vitreous samples.

Conclusions

We have demonstrated that vitreous specimens from PDR and ED patients share common elevations of pro-inflammatory and pro-angiogenic cytokines. This suggests that common cytokine profiles link these two conditions.

Figures 12

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII7–10). Immobilized rhFNIII7–10 was characterized in terms of amount (125I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII7–10 with rhFNIII7–10 concentration, and, for the same concentration, higher amounts of rhFNIII7–10 on DA 4% compared with DA 15%. Moreover, rhFNIII7–10 concentrations as low as 5 and 20 lgml 1 in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20 lgml 1 human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII7–10 grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this review, we discuss a paradigm whereby changes in the intragraft microenvironment promote or sustain the development of chronic allograft rejection. A key feature of this model involves the microvasculature including (a) endothelial cell (EC) destruction, and (b) EC proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced responses. These changes in the microvasculature likely create abnormal blood flow patterns and thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC activation and proliferation and it has potential to sustain inflammation via direct interactions with leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how these events can be targeted therapeutically using mTOR inhibitors. EC activation and proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the progression of chronic rejection and thus promote long-term graft survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les anticorps anti-phospholipides (aPL), tels que les anticoagulants lupiques (LAC), sont associés au développement récurrent de thromboses chez les patients atteints du lupus érythémateux disséminé (LED). Il a été observé que des titres élevés d’auto-anticorps antilamine B1 (anti-LB1), chez des patients porteurs de LAC, diminuent le risque de ces manifestations thrombotiques. Toutefois, la relation existant entre la lamine B1 (LB1), les anti-LB1 et la thromboprotection n’est toujours pas expliquée. Dans cette étude, nous avons donc cherché à comprendre comment la LB1 et les anti-LB1 induisent cette thromboprotection. Nous avons testé les effets d'anti-LB1 purifiés et de LB1 recombinante sur l'activation des cellules endothéliales et des plaquettes. Nous avons été en mesure de déterminer que la LB1, contrairement aux anti-LB1, possède une activité anti-plaquettaire. En effet, la LB1 réduit l’activation et l’agrégation plaquettaires in vitro et in vivo. Cette activité est due à une liaison directe de la LB1 aux plaquettes, suivie par une internalisation rapide dans des vésicules de clathrine. Par co-immunoprécipitation, nous avons découvert que la LB1 interagit avec le récepteur de l’insuline situé sur la membrane plaquettaire. La liaison de la LB1 à ce récepteur entraîne vraisemblablement son internalisation et l'inhibition d'une des cascades de signalisation normalement induite par le récepteur de l’insuline, menant éventuellement à l’inhibition des fonctions plaquettaires. L’ajout d’anti-LB1 purifiés dans nos expériences a permis d'augmenter de façon significative la persistance de la LB1 dans les plaquettes, une observation confirmée par la détection de LB1 uniquement dans les lysats de plaquettes prélevées chez des patients anti-LB1 positifs. iv Nos résultats suggèrent que la LB1 prend part aux mécanismes régulateurs des processus d’hémostase chez des sujets sains et que la présence d’anti-LB1, chez les patients lupiques, prolonge la persistance de cet auto-antigène dans les plaquettes, les empêchant ainsi de s’activer. Ce mécanisme expliquerait la diminution du risque de thrombose chez les patients LAC positifs porteurs d’anti-LB1 circulants.