965 resultados para end-column amperometric detection
Resumo:
Amperometric titration using two Pt microelectrodes for the determination of phosphite in fertilizers based on the oxidation of analyte by iodine is proposed. The influence of pH, buffer composition, temperature, and foreign species on the end point and titration time was investigated. For titrations carried out at 70 degrees C using the pH 6.8 phosphate buffer, samples containing ca. 0.4% (m/v) P(2)O(5) could be titrated with 0.050 mol L(-1) iodine titrant, and the end point determined by extrapolating the linear portions of the plot to their intersection coincided with the end point identified by spectrophotometry. Accuracy was checked for phosphite determination in five fertilizer samples. Results were in agreement at the 95% confidence level (paired t test) with spectrophotometry. Recoveries of phosphite added to fertilizer samples ranged from 97% to 102% regardless of the amount of spiking in several determinations. The relative standard deviation (n = 10) was 1.0% for a diluted sample containing 0.050 mol L(-1) Na(2)HPO(3).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Detection of Cryptosporidium parvum oocysts in calf fecal samples by direct immunofluorescence assay
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A crude antigenic preparation of Babesia bigemina was used to develop an ELISA for the detection of IgM antibodies. Optimal dilutions of the antigen, using positive and negative reference sera, were determined by checkerboard titrations. Negative sera from cattle imported from tick-free areas, serum samples collected from infected B. bigemina cattle were used to validate the test. The specificity was 94% and sensitivity of the Elisa 87.5%. Sera from 385 cattle deriving from areas free from tick-borne diseases, which were submitted to a preimmunization process, were screened by this technique. The Elisa detected seroconversion on the 14th day post-inoculation in animals either infested with Boophilus microplus ticks (infected with B. bigemina), or inoculated with B. bigemina infected blood. Antibody titers decreased after day 33; however, all animals remained positive until the end of the experiment (124 days). The ELISA described may prove to be an appropriate serological test for the detection of IgM antibodies against B. bigemina.
Resumo:
A method has been developed for extraction and determination of carbofuran in milk. The method involved direct injection of raw milk on to a human serum albumin dimethyloctyl-silica gel (HSA-Cs) column and the use of 80:20 (v/v) 0.01 M phosphate buffer pH 5.5 - acetonitrile as mobile phase. UV spectrophotometric detection was performed at 220 nm. Identification was based on retention time. Quantification was performed by automatic peak-area determination and was calibrated by use of an external standard.
Resumo:
A fast, simple, non-destructive method for the direct screening of polycyclic aromatic hydrocarbons (PAHs) in vegetable oil samples is proposed. The method uses a supercritical fluid extraction (SFE) system coupled on-line with a fluorimetric detector to determine PAHs. This special assembly avoids the main problems encountered in the determination of PAHs in complex matrices such as vegetable oils. PAHs are selectively extracted by using silica gel in the thimble and cleaned up by passage through a C18 column. Interferences are preferentially retained by the silica gel during the SFE process while PAHs are adsorbed in the C18 column and the remainder of the matrix is sent to waste. Finally, the C18 column is purged to remove residual CO2 gas and adsorbed PAHs are recovered by desorption with a solvent. The extracts from positive samples are subsequently analyzed by liquid chromatography (LC) with fluorescence detection. The proposed method allows the confirmation of vegetable oil safety and hence provides a new tool for consumer protection. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Biosensors for determination of carbamates in vegetables based on five different cholinesterases as biorecognition elements and a screen-printed electrode system as an amperometric transducer were developed. Measurements were simply performed by dropping solutions (either sample or substrate) directly on the biosensor. The response of biosensors to selected carbamates (aldicarb, carbaryl, carbofuran, methomyl and propoxur) was characterized. The performance was evaluated on extracts of potatoes and carrots, the results from the AChE biosensor and a standard HPLC procedure were compared. Finally, the biosensor was used for the direct analysis of vegetable juices without any pretreatment steps. In this case, 10 mu g/L levels of added carbofuran and propoxur were reliably identified. The whole procedure takes less than 20 min including 10 min incubation with samples. The concentrations of carbamates determined with biosensor agreed well for carbofuran. Lower response was observed for propoxur.
Resumo:
An amperometric biosensor for salicylate detection was developed by immobilizing salicylate hydroxylase via glutaraldehyde onto a polypyrrole film doped with hexacyanoferrate, supported on a glassy carbon electrode surface. The sensor monitors the catechol produced in the enzymatic reaction on the film surface, at an applied potential of 150 mV vs. SCE. A [NADH]/[salicylate] ratio between 2 and 4 gave the best response. The biosensor presented the best performance in a solution with pH=7.4. The response time was about 40 s. A linear range of response was observed for salicylate concentrations between 1.0x10(-5) and 1.0x10(-4) mol l(-1) and the equation adjusted for this curve was I=(-0.04+/-0.01)+(11.4+/-0.2)[salicylate] with a correlation coefficient of 0.999 for n=6. The biosensor retains its activity for at least 10 days despite daily use. The results obtained using the biosensor for salicylate determination, in three different samples of antithermic drugs, presented a good correlation with the standard colorimetric method.
Resumo:
Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.
Resumo:
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 mu L phosphoric acid 1 mol L-1 at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde- DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C-18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 amg L-1 per injection (20 mu L) and the limit of detection (LOD) for acetaldehyde was 2.03 mu g L-1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.
Resumo:
A competitive enzyme-linked immunosorbent assay (ELISA) method for carbaryl quantitation in crop extracts was validated by liquid chromatography (LC) with diode array detection (DAD). For this purpose, six crops (banana, carrot, green bean, orange, peach and potato) were chosen for recovery and reproducibility studies. The general sample preparation included extraction with methanol followed by liquid-liquid partitioning and clean-up on Celite-charcoal adsorbent column of the vegetable extracts. ELISA samples consisted of a diluted LC extract in assay phosphate buffer (pH 7.5). The potential effect of methanol in these samples was evaluated. It was observed that a maximum content of 10% methanol present in the assay buffer could be tolerated without expressive losses in the ELISA performance. Under these conditions, a IC50 similar to 1.48 mu g l(-1) was obtained. A minimum matrix effect with a 1:50 dilution of the methanolic extracts in assay buffer was noticed, except for green bean samples that inhibited completely the assay. For the vegetable extracts, the ELISA sensitivities varied from 3.9 to 5.7 mu g l(-1), and good recoveries (82-96%) with R.S.D.s ranging from 5.7 to 12.1% were found. An excellent correlation between the LC-DAD and ELISA techniques was obtained. The confirmation of the carbaryl in less concentrated samples was achieved by LC-mass spectrometry interfaced with atmospheric pressure chemical ionisation. The [M + H](+)= 202 and [M + H-57](+)=145 ions, equivalent to the protonated molecular and l-naphthol ions, respectively, were used to carbaryl identification in these samples. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
A method has been developed for the determination of the cocaine levels in samples of hair, using a chromatographic column internal surface reverse phase (ISRP)-C-18, for direct injection of the extracts of hair, without purification or derivation of the sample. The method allows monitoring an individual stopped for using or making cocaine. This method allowed the determination of levels of cocaine concentration in 75% of the analyzed samples of chemical dependents' hair, with cocaine detected at levels of 0.37-16.85 mug g(-1). In the other analyzed samples (25%), the drug was not detected, because the corresponding individuals told us that they consumed cocaine infrequently and in small amounts. The detection