974 resultados para electric potential
Resumo:
"Originally published in 1894 by the Electrical Engineer, New York."
Resumo:
Cover title: An evaluation of the economic potential for cogeneration in Illinois.
Resumo:
"This report addresses the potential benefits of municipal aggregation of retail electric customers as a means for customers to benefit from the Electric Service Customer Choice and Rate Relief Law of 1997 (Public Act 90-561), referred to in this report as the Customer Choice Law. This report was authorized by the General Assembly on June 26, 2002, in Public Act 92-0585."--P. ii.
Resumo:
"July 2002"
Resumo:
Passive electroreception is a complex and specialised sense found in a large range of aquatic vertebrates primarily designed for the detection of weak bioelectric fields. Particular attention has traditionally focused on cartilaginous fishes, but a range of teleost and non-teleost fishes from a diversity of habitats have also been examined. As more species are investigated, it has become apparent that the role of electroreception in fishes is not restricted to locating prey, but is utilised in other complex behaviours. This paper presents the various functional roles of passive electroreception in non-electric fishes, by reviewing much of the recent research on the detection of prey in the context of differences in species' habitat (shallow water, deep-sea, freshwater and saltwater). A special case study on the distribution and neural groupings of ampullary organs in the omnihaline bull shark, Carcharhinus leucas, is also presented and reveals that prey-capture, rather than navigation, may be an important determinant of pore distribution. The discrimination between potential predators and conspecifics and the role of bioelectric stimuli in social behaviour is discussed, as is the ability to migrate over short or long distances in order to locate environmentally favourable conditions. The various theories proposed regarding the importance and mediation of geomagnetic orientation by either an electroreceptive and/or a magnetite-based sensory system receives particular attention. The importance of electroreception to many species is emphasised by highlighting what still remains to be investigated, especially with respect to the physical, biochemical and neural properties of the ampullary organs and the signals that give rise to the large range of observed behaviours.
Resumo:
In this paper, we investigate the effects of various potential models in the description of vapor–liquid equilibria (VLE) and adsorption of simple gases on highly graphitized thermal carbon black. It is found that some potential models proposed in the literature are not suitable for the description of VLE (saturated gas and liquid densities and the vapor pressure with temperature). Simple gases, such as neon, argon, krypton, xenon, nitrogen, and methane are studied in this paper. To describe the isotherms on graphitized thermal carbon black correctly, the surface mediation damping factor introduced in our recent publication should be used to calculate correctly the fluid–fluid interaction energy between particles close to the surface. It is found that the damping constant for the noble gases family is linearly dependent on the polarizability, suggesting that the electric field of the graphite surface has a direct induction effect on the induced dipole of these molecules. As a result of this polarization by the graphite surface, the fluid–fluid interaction energy is reduced whenever two particles are near the surface. In the case of methane, we found that the damping constant is less than that of a noble gas having the similar polarizability, while in the case of nitrogen the damping factor is much greater and this could most likely be due to the quadrupolar nature of nitrogen.
Resumo:
This thesis records the design and development of an electrically driven, air to water, vapour compression heat pump of nominally 6kW heat output, for residential space heating. The study was carried out on behalf of GEC Research Ltd through the Interdisciplinary Higher Degrees Scheme at Aston University. A computer based mathematical model of the vapour compression cycle was produced as a design aid, to enable the effects of component design changes or variations in operating conditions to be predicted. This model is supported by performance testing of the major components, which revealed that improvements in the compressor isentropic efficiency offer the greatest potential for further increases in cycle COPh. The evaporator was designed from first principles, and is based on wire-wound heat transfer tubing. Two evaporators, of air side area 10.27 and 16.24m2, were tested in a temperature and humidity controlled environment, demonstrating that the benefits of the large coil are greater heat pump heat output and lower noise levels. A systematic study of frost growth rates suggested that this problem is most severe at the conditions of saturated air at 0oC combined with low condenser water temperature. A dynamic simulation model was developed to predict the in-service performance of the heat pump. This study confirmed the importance of an adequate radiator area for heat pump installations. A prototype heat pump was designed and manufactured, consisting of a hermetic reciprocating compressor, a coaxial tube condenser and a helically coiled evaporator, using Refrigerant 22. The prototype was field tested in a domestic environment for one and a half years. The installation included a comprehensive monitoring system. Initial problems were encountered with defrosting and compressor noise, both of which were solved. The unit then operated throughout the 1985/86 heating season without further attention, producing a COPh of 2.34.
Resumo:
The electrostatic model for osmotic flow across a porous membrane in our previous study (Akinaga et al. 2008)" was extended to include the streaming potential, for solutes and pores of like charge and fixed surface charge densities. The magnitude of the streaming potential was determined to satisfy zero current condition along the pore axis. It was found that the streaming potential affects the velocity profiles of the pressure driven flow as well as the osmotic flow through the pore, and decreases their flow rates, particularly in the case of large Debye length relative to the pore radius, whereas it has little effect on the reflection coefficients of spherical solutes through cylindrical pores.
Resumo:
This paper investigates the impact that electric vehicle uptake will have on the national electricity demand of Great Britain. Data from the National Travel Survey, and the Coventry and Birmingham Low Emissions Demonstration (CABLED) are used to model an electrical demand profile in a future scenario of significant electric vehicle market penetration. These two methods allow comparison of how conventional cars are currently used, and the resulting electrical demand with simple substitution of energy source, with data showing how electric vehicles are actually being used at present. The report finds that electric vehicles are unlikely to significantly impact electricity demand in GB. The paper also aims to determine whether electric vehicles have the potential to provide ancillary services to the grid operator, and if so, the capacity for such services that would be available. Demand side management, frequency response and Short term Operating Reserve (STOR) are the services considered. The report finds that electric cars are unlikely to provide enough moveable demand peak shedding to be worthwhile. However, it is found that controlling vehicle charging would provide sufficient power control to viably act as frequency response for dispatch by the transmission system operator. This paper concludes that electric vehicles have technical potential to aid management of the transmission network without adding a significant demand burden. © 2013 IEEE.
Resumo:
Switched reluctance motors (SRMs) can provide an attractive traction drive for electric vehicle applications. To lower the investment in the off-board charging station facilities, a multi-functional switched reluctance motor topology is proposed on the basis of the traditional asymmetrical half-bridge converter. The SRM phase windings are employed as input filter inductors and centre-tapped windings are also developed to form symmetrical inductors for three-phase grid supply. Owing to the varying rotor position, phase inductors are unequal between one another. A hysteresis control scheme is therefore developed for grid-connection operation. In addition to AC supplies, the proposed topology can also supports the DC-source charging. A new current sharing strategy is employed to diminish the influence of the unequal winding inductances. The simulation and experimental tests are carried out to verify the proposed topology and control methods. Since this work eliminates the need for building charging station infrastructure, its potential economic impact on the automotive market can be significant.
Resumo:
The balance between the costs and benefits of conspicuous signals ensures that the expression of those signals is related to the quality of the bearer. Plastic signals could enable males to maximize conspicuous traits to impress mates and competitors, but reduce the expression of those traits to minimize signaling costs, potentially compromising the information conveyed by the signals. ^ I investigated the effect of signal enhancement on the information coded by the biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. Increases in population density drive males to enhance the amplitude of their signals. I found that signal amplitude enhancement improves the information about the signaler's size. Furthermore, I found that the elongation of the signal's second phase conveys information about androgen levels in both sexes, gonad size in males and estrogen levels in females. Androgens link the duration of the signal's second phase to other androgen-mediated traits making the signal an honest indicator of reproductive state and aggressive motivation. ^ Signal amplitude enhancement facilitates the assessment of the signaler's resource holding potential, important for male-male interactions, while signal duration provides information about aggressive motivation to same-sex competitors and reproductive state to the opposite sex. Moreover, I found that female signals also change in accordance to the social environment. Females also increase the amplitude of their signal when population density increases and elongate the duration of their signal's second phase when the sex ratio becomes female-biased. Indicating that some degree of sexual selection operates in females. ^ I studied whether male B. gauderio use signal plasticity to reduce the cost of reproductive signaling when energy is limited. Surprisingly, I found that food limitation promotes the investment in reproduction manifested as signal enhancement and elevated androgen levels. The short lifespan and single breeding season of B. gauderio diminishes the advantage of energy savings and gives priority to sustaining reproduction. I conclude that the electric signal of B. gauderio provides reliable information about the signaler, the quality of this information is reinforced rather than degraded with signal enhancement.^
Resumo:
Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.
Resumo:
This theoretical paper attempts to define some of the key components and challenges required to create embodied conversational agents that can be genuinely interesting conversational partners. Wittgenstein's argument concerning talking lions emphasizes the importance of having a shared common ground as a basis for conversational interactions. Virtual bats suggests that-for some people at least-it is important that there be a feeling of authenticity concerning a subjectively experiencing entity that can convey what it is like to be that entity. Electric sheep reminds us of the importance of empathy in human conversational interaction and that we should provide a full communicative repertoire of both verbal and non-verbal components if we are to create genuinely engaging interactions. Also we may be making the task more difficult rather than easy if we leave out non-verbal aspects of communication. Finally, analogical peacocks highlights the importance of between minds alignment and establishes a longer term goal of being interesting, creative, and humorous if an embodied conversational agent is to be truly an engaging conversational partner. Some potential directions and solutions to addressing these issues are suggested.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08