917 resultados para eddy covariance tower
Resumo:
This paper describes how the A -if) formulation may be applied to determine the losses in the stator duct spacers of large a.c. motors. The model is described in terms of its geometry and boundary conditions. The novel aspects of the application of the formulation to this problem are explained. These include the modelling of fixed currents sources (the stator windings), the location of the necessary cut surfaces and the determination of their magnetic scalar potential differences, and the implementation of periodic boundary conditions for vector variables. Results are presented showing how the duct spacer losses vary with load, and with the relative permeability of the spacer material. The effects of modelling iron nonlinearity, of both the spacer and the steel laminations, are also illustrated. © 1996 IEEE.
Resumo:
The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method using 'simple model eddies' (Townsend 1976) for DNS of stationary homogeneous isotropic turbulence is proposed. A force field is obtained in real space by sprinkling many space-filling 'simple model eddies' whose centers are randomly but uniformly distributed in space and whose axes of rotation are random. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects are investigated. The results show that stationary homogeneous isotropic turbulence is generated in real space using the present method. By using different model eddies with different sizes and rotation speeds, we could change the turbulence properties such as the integral and micro scales, the turbulent Reynolds number and the isotropy of turbulence. Turbulence intensities near the wall showed good agreements with the previous measurement and the linear analysis based on a rapid distortion theory (RDT). The splat effect (i.e., turbulence intensities of the components parallel to the boundary are amplified) occurs near the boundary and the viscous effect prohibits the splat effect at the quasi steady state at low Reynolds number.
Resumo:
Detached-eddy simulation of transonic flow past a thin section of a fan blade has been carried out. The inflow Mach number is 1.03, and a bow shock forms upstream of the blade. The shock (corresponding to an adjacent blade) impinges on the suction-side boundary layer which causes separation and rapid transition to turbulence. The boundary layer later re-attaches near the trailing edge. The pressure-side boundary layer transitions near the leading edge and remains attached. Mean surface pressure shows basic agreement with a steady RANS calculation; strong shock motion in the DES is the major cause of discrepancy. Surface pressure spectra are investigated, and low-frequency two-dimensional disturbances associated with the shock motion are dominant. Removing the two-dimensional component from the spectra, the pressure-side three-dimensional spectra reproduce the spectral shape given by a correlation for flat-plate boundary layer wall-pressure spectra developed by Goody. 1 The suction-side disturbances produce similar high- and intermediate-frequency scalings despite substantially different boundary layer development. Near-wake results show that disturbance kinetic energy peaks at the suction-side inflection point of the mean profile, and that the energy is concentrated at low frequencies relative to the near-trailing edge surface pressure. Copyright © 2009 by the authors.
Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame
Resumo:
This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.
Resumo:
The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.
Resumo:
A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.