955 resultados para dynamic capabilities of the territory
Resumo:
The Historical Society of Iowa presents a series of lectures written by early professional men and women of the Iowa territorial days in this book. Lectures of pioneer physicians, teaches, lawyers, and clergymen are included.
Resumo:
The influence of different parts of the interaction potential on the microscopic behavior of simple liquid metals is investigated by molecular dynamics simulation. The role of the soft-core repulsive, short-range attractive, and long-range oscillatory forces on the properties of liquid lithium close to the triple point is analyzed by comparing the results from simulations of identical systems but truncating the potential at different distances. Special attention is paid to dynamic collective properties such as the dynamic structure factors, transverse current correlation functions, and transport coefficients. It is observed that, in general, the effects of the short-range attractive forces are important. On the contrary, the influence of the oscillatory long-range interactions is considerably less, being the most pronounced for the dynamic structure factor at long wavelengths. The results of this work suggest that the influence of the attractive forces becomes less significant when temperature and density increase.
Resumo:
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.
Resumo:
We present here a dynamic model of functional equilibrium between keratinocyte stem cells, transit amplifying populations and cells that are reversibly versus irreversibly committed to differentiation. According to this model, the size of keratinocyte stem cell populations can be controlled at multiple levels, including relative late steps in the sequence of events leading to terminal differentiation and by the influences of a heterogeneous extra-cellular environment. We discuss how work in our laboratory, on the interconnection between the cyclin/CDK inhibitor p21WAF1/Cip1 and the Notch1 signaling pathways, provides strong support to this dynamic model of stem cell versus committed and/or differentiated keratinocyte populations.
Resumo:
Polychlorinated trityl radicals bearing carboxylate substituents are water soluble persistent radicals that can be used for dynamic nuclear polarization. In contrast to other trityl radicals, the polarization mechanism differs from the classical solid effect. DFT calculations performed to rationalize this behaviour support the hypothesis that polarization is transferred from the unpaired electron to chlorine nuclei and from these to carbon by spin diffusion. The marked differences observed between neutral and anionic forms of the radical will be discussed.
Resumo:
The distribution of distances from atoms of a particular element E to a probe atom X (oxygen in most cases), both bonded and intermolecular non-bonded contacts, has been analyzed. In general, the distribution is characterized by a maximum at short EX distances corresponding to chemical bonds, followed by a range of unpopulated distances the van der Waals gap and a second maximum at longer distances the van der Waals peak superimposed on a random distribution function that roughly follows a d3 dependence. The analysis of more than five million interatomic"non-bonded" distances has led to the proposal of a consistent set of van der Waals radii for most naturally occurring elements, and its applicability to other element pairs has been tested for a set of more than three million data, all of them compared to over one million bond distances.
Resumo:
The human motion study, which relies on mathematical and computational models ingeneral, and multibody dynamic biomechanical models in particular, has become asubject of many recent researches. The human body model can be applied to different physical exercises and many important results such as muscle forces, which are difficult to be measured through practical experiments, can be obtained easily. In the work, human skeletal lower limb model consisting of three bodies in build using the flexible multibody dynamics simulation approach. The floating frame of reference formulation is used to account for the flexibility in the bones of the human lower limb model. The main reason of considering the flexibility inthe human bones is to measure the strains in the bone result from different physical exercises. It has been perceived the bone under strain will become stronger in order to cope with the exercise. On the other hand, the bone strength is considered and important factors in reducing the bone fractures. The simulation approach and model developed in this work are used to measure the bone strain results from applying raising the sole of the foot exercise. The simulation results are compared to the results available in literature. The comparison shows goof agreement. This study sheds the light on the importance of using the flexible multibody dynamic simulation approach to build human biomechanical models, which can be used in developing some exercises to achieve the optimalbone strength.
Resumo:
In Switzerland, organ procurement is well organized at the national-level but transplant outcomes have not been systematically monitored so far. Therefore, a novel project, the Swiss Transplant Cohort Study (STCS), was established. The STCS is a prospective multicentre study, designed as a dynamic cohort, which enrolls all solid organ recipients at the national level. The features of the STCS are a flexible patient-case system that allows capturing all transplant scenarios and collection of patient-specific and allograft-specific data. Beyond comprehensive clinical data, specific focus is directed at psychosocial and behavioral factors, infectious disease development, and bio-banking. Between May 2008 and end of 2011, the six Swiss transplant centers recruited 1,677 patients involving 1,721 transplantations, and a total of 1,800 organs implanted in 15 different transplantation scenarios. 10 % of all patients underwent re-transplantation and 3% had a second transplantation, either in the past or during follow-up. 34% of all kidney allografts originated from living donation. Until the end of 2011 we observed 4,385 infection episodes in our patient population. The STCS showed operative capabilities to collect high-quality data and to adequately reflect the complexity of the post-transplantation process. The STCS represents a promising novel project for comparative effectiveness research in transplantation medicine.
Resumo:
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Resumo:
Firms operating in a changing environment have a need for structures and practices that provide flexibility and enable rapid response to changes. Given the challenges they face in attempts to keep up with market needs, they have to continuously improve their processes and products, and develop new products to match market requirements. Success in changing markets depends on the firm's ability to convert knowledge into innovations, and consequently their internal structures and capabilities have an important role in innovation activities. According 10 the dynamic capability view of the firm, firms thus need dynamic capabilities in (he form ofassets, processes and structures that enable strategic flexibility and support entrepreneurial opportunity sensing and exploitation. Dynamic capabilities are also needed in conditions of rapid change in the operating environment, and in activities such as new product development and expansion to new markets. Despite the growing interest in these issues and the theoretical developments in the field of strategy research, there are still only very few empirical studies, and large-scale empirical studies in particular, that provide evidence that firms'dynamic capabilities are reflected in performance differences. This thesis represents an attempt to advance the research by providing empirical evidence of thelinkages between the firm's dynamic capabilities and performance in intenationalization and innovation activities. The aim is thus to increase knowledge and enhance understanding of the organizational factors that explain interfirm performance differences. The study is in two parts. The first part is the introduction and the second part comprises five research publications covering the theoretical foundations of the dynamic capability view and subsequent empirical analyses. Quantitative research methodology is used throughout. The thesis contributes to the literature in several ways. While a lot of prior research on dynamic capabilities is conceptual in nature, or conducted through case studies, this thesis introduces empirical measures for assessing the different aspects, and uses large-scale sampling to investigate the relationships between them and performance indicators. The dynamic capability view is further developed by integrating theoretical frameworks and research traditions from several disciplines. The results of the study provide support for the basic tenets of the dynamic capability view. The empirical findings demonstrate that the firm's ability to renew its knowledge base and other intangible assets, its proactive, entrepreneurial behavior, and the structures and practices that support operational flexibility arepositively related to performance indicators.
Resumo:
Belt-drive systems have been and still are the most commonly used power transmission form in various applications of different scale and use. The peculiar features of the dynamics of the belt-drives include highly nonlinear deformation,large rigid body motion, a dynamical contact through a dry friction interface between the belt and pulleys with sticking and slipping zones, cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The life of the belt-drive is critically related on these features, and therefore, amodel which can be used to study the correlations between the initial values and the responses of the belt-drives is a valuable source of information for the development process of the belt-drives. Traditionally, the finite element models of the belt-drives consist of a large number of elements thatmay lead to computational inefficiency. In this research, the beneficial features of the absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to fulfill the following requirements for the successful and efficient analysis of the belt-drive systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the consideration of theeffect of the shear deformation, the exact description of the highly nonlinear deformations and a simple and realistic description of the contact. The use of distributed contact forces and high order beam and plate elements based on the absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives can be obtained with a significantly smaller number of elements and degrees of freedom in comparison to the previously published finite element models of belt-drives. The results of theexamples demonstrate the functionality and suitability of the absolute nodal coordinate formulation for the computationally efficient and realistic modeling ofbelt-drives. This study also introduces an approach to avoid the problems related to the use of the continuum mechanics approach in the definition of elastic forces on the absolute nodal coordinate formulation. This approach is applied to a new computationally efficient two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. The proposed beam element uses a linear displacement field neglecting higher-order terms and a reduced number of nodal coordinates, which leads to fewer degrees of freedom in a finite element.