739 resultados para drag


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over recent years academia and industry have engaged with the challenge of model testing deepwater structures at conventional scales. One approach to the limited depth problem has been to truncate the lines. This concept will be introduced, highlighting the need to better understand line dynamic processes. The type of line truncation developed here models the upper sections of each line in detail, capturing wave action and all coupling effects with the vessel, terminating to an approximate analytical model that aims to simulate the remainder of the line. A rationale for this is that in deep water transverse elastic waves of a line are likely to decay before they are reflected at the seabed because of nonlinear hydrodynamic drag forces. The first part of this paper is centered on verification of this rationale. A simplified model of a mooring line that describes the transverse dynamics in wave frequency is used, adopting the equation of motion of an inextensible taut string. The line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it can be useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. This is followed by developing a truncation mechanism, formulating an end approximation that can reproduce the correct impedance, had the line been continuous to full depth. It has been found that below a certain length criterion, which is also universal, the transverse vibrational characteristics for each line are inertia driven. As such the truncated model can assume a linear damper whose coefficient depends on the line properties and frequency of vibration. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior to stocking economic species in tanks and nursery ponds, all the unwanted and predatory fishes in them will have to be removed. Even though most of them can be caught with ordinary gear such as cast net, drag net, scoop net etc. Total or absolute eradication is not possible and those left over are sufficient to destroy all the fingerlings introduced. Development of an electrical method for killing predatory fishes at reasonable cost is therefore, expected to provide a solution. This paper deals with a few methods, based on the use of electricity and which are suitable for different ponds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering developments, problems of marine corrosion, fouling and practical innovative applications of copper-nickel alloys in comparison with other materials for marine aquacultural engineering are presented. Coefficient of drag and hydrodynamic force acting on nylon and polyethylene net enclosures have shown a four-fold increase of force in four months at the Cochin harbour due to fouling. Corrosion behaviour of copper-nickel and other copper base alloys are also presented. Effects of copper additions to culture water are reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failure of piled foundations has been observed in many earthquake events. The manner in which a pile is able to support its applied superstructure loading during an earthquake is not yet fully understood, particularly with respect to the shaft friction capacity. In this paper, new pile group is presented which has been instrumented to measure the shaft friction distribution along the length of a pile. In addition, this pile group is able to measure the pore pressures directly beneath the pile tips. The pile group was tested in dynamic centrifuge experiments and showed differing shaft friction behaviour in dense and loose soil layers as well as strong dilation beneath the pile tips at the start of earthquake loading. A reduction in shaft friction was observed after the earthquake due to soil down-drag. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this.We study how this spiral mode of vortex breakdown might be suppressed or promoted. We use a Lagrangian approach to identify regions of the flow which are sensitive to small open-loop steady and unsteady (harmonic) forces. We find these regions to be upstream of the vortex breakdown bubble. We investigate passive control using a small axisymmetric control ring. In this case, the steady and unsteady control forces are caused by the drag force on the control ring. We find a narrow region upstream of the bubble where the control ring will stabilise the flow and we verify this using numerical simulations. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robustness enhancement for Shock Control Bumps (SCBs) on transonic wings is an ongoing topic because most designs provide drag savings only in a relatively small band of the airfoil polar. In this paper, different bump shapes are examined with CFD methods which are validated first by comparison with wind tunnel results. An evaluation method is introduced allowing the robustness assessment of a certain design with little computational effort. Shape optimizations are performed to trim SCB designs to maximum performance on the one hand and maximum robustness on the other hand. The results are analysed and different and parameters influencing the robustness are suggested. Copyright © 2012 by Klemens Nuebler.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leading edge vortices are considered to be important in generating the high lift coefficients observed in insect flight and may therefore be relevant to micro-air vehicles. A potential flow model of an impulsively started flat plate, featuring a leading edge vortex (LEV) and a trailing edge vortex (TEV) is fitted to experimental data in order to provide insight into the mechanisms that influence the convection of the LEV and to study how the LEV contributes to lift. The potential flow model fits the experimental data best with no bound circulation, which is in accordance with Kelvin's circulation theorem. The lift-to-drag ratio is well approximated by the function 'cot α' for α > 15°, which supports the tentative conclusion that shortly after an impulsive start, at post-stall angles of attack, lift is caused non-circulatory forces and by the action of the LEV as opposed to bound circulation. Copyright © 2012 by C. W. Pitt Ford.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precise magnetotransport studies of heat and charge carriers in polycrystalline MgB2 show that magnetic fields up to 8 T remarkably influence electrical resistivity, thermoelectric power and thermal conductivity. The superconducting transition temperature shifts from 39 K to 19 K at 8 T as observed on electric signals. The temperature transition width is weakly broadened. Electron and phonon contributions to the thermal conductivity are separated and discussed. The Debye temperature calculated from a phonon drag thermoelectric power component is inconsistent with values derived through other effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices. © 2010 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A balloon tethered at an altitude of 20 km could deliver a particulate cloud leading to global cooling. Tethering a balloon at this altitude poses significant problems with respect to vibration and stability, especially in regions of high wind. No-one has ever proposed, yet alone launched, a balloon at an altitude of 20 km tethered to the ground. Owing to wind, the tether needs to be 23 km in length and is to be fixed to a ship at sea or on land in equatorial regions. Whilst the balloon at 20 km is subject to relatively modest wind conditions, at jet stream altitudes (10km) the tether will experience much higher wind loadings, not only because of the high wind speeds of up to 300 km / hr but also because of the high air density. A tether of circular cross section in these high winds will be subject to horizontal and downward drag forces that would bring the aerostat down. For this reason it is advantageous to consider a self-aligning tether of an aerodynamic cross section whereby it is possible to reduce the drag substantially. One disadvantage of a non-circular tether is the possibility of flutter and galloping instabilities. It is reasonably straightforward to model these phenomena for short lengths of aerofoil, but the situation becomes more complex for a 20 km tensioned tether with large deflection and curvature, variable wind speed, variable air density and variable tension. Analysis using models of infinite length are used to establish the stability at a local scale where the tension, aerodynamic and geometric properties are considered constant. Dispersion curve analysis is useful here. But for dynamics on a long-wavelength scale (several km) then a full non-linear analysis is required. This non-linear model can be used to establish the local values of tension appropriate for the dispersion analysis. This keynote presentation will give some insight into these issues.