871 resultados para disposable contact lenses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To demonstrate the application of low-coherence reflectometry to the study of biometric changes during disaccommodation responses in human eyes after cessation of a near task and to evaluate the effect of contact lenses on low-coherence reflectometry biometric measurements. METHODS: Ocular biometric parameters of crystalline lens thickness (LT) and anterior chamber depth (ACD) were measured with the LenStar device during and immediately after a 5 D accommodative task in 10 participants. In a separate trial, accommodation responses were recorded with a Shin-Nippon WAM-5500 optometer in a subset of two participants. Biometric data were interleaved to form a profile of post-task anterior segment changes. In a further experiment, the effect of soft contact lenses on LenStar measurements was evaluated in 15 participants. RESULTS: In 10 adult participants, increased LT and reduced ACD was seen during the 5 D task. Post-task, during fixation of a 0 D target, a profile of the change in LT and ACD against time was observed. In the two participants with accommodation data (one a sufferer of nearwork-induced transient myopia and other a non-sufferer), the post-task changes in refraction compared favorably with the interleaved LenStar biometry data. The insertion of soft contact lenses did not have a significant effect on LenStar measures of ACD or LT (mean change: -0.007 mm, p = 0.265 and + 0.001 mm, p = 0.875, respectively). CONCLUSIONS: With the addition of a relatively simple stimulus modification, the LenStar instrument can be used to produce a profile of post-task changes in LT and ACD. The spatial and temporal resolution of the system is sufficient for the investigation of nearwork-induced transient myopia from a biometric viewpoint. LenStar measurements of ACD and LT remain valid after the fitting of soft contact lenses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose To develop a standardized questionnaire of near visual function and satisfaction to complement visual function evaluations of presbyopic corrections. Setting Eye Clinic, School of Life and Health Sciences, Aston University, Midland Eye Institute and Solihull Hospital, Birmingham, United Kingdom. Design Questionnaire development. Methods A preliminary 26-item questionnaire of previously used near visual function items was completed by patients with monofocal intraocular lenses (IOLs), multifocal IOLs, accommodating IOLs, multifocal contact lenses, or varifocal spectacles. Rasch analysis was used for item reduction, after which internal and test–retest reliabilities were determined. Construct validity was determined by correlating the resulting Near Activity Visual Questionnaire (NAVQ) scores with near visual acuity and critical print size (CPS), which was measured using the Minnesota Low Vision Reading Test chart. Discrimination ability was assessed through receiver-operating characteristic (ROC) curve analysis. Results One hundred fifty patients completed the questionnaire. Item reduction resulted in a 10-item NAVQ with excellent separation (2.92), internal consistency (Cronbach a = 0.95), and test–retest reliability (intraclass correlation coefficient = 0.72). Correlations of questionnaire scores with near visual acuity (r = 0.32) and CPS (r = 0.27) provided evidence of validity, and discrimination ability was excellent (area under ROC curve = 0.91). Conclusion Results show the NAVQ is a reliable, valid instrument that can be incorporated into the evaluation of presbyopic corrections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To provide a consistent standard for the evaluation of different types of presbyopic correction. SETTING: Eye Clinic, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom. METHODS: Presbyopic corrections examined were accommodating intraocular lenses (IOLs), simultaneous multifocal and monovision contact lenses, and varifocal spectacles. Binocular near visual acuity measured with different optotypes (uppercase letters, lowercase letters, and words) and reading metrics assessed with the Minnesota Near Reading chart (reading acuity, critical print size [CPS], CPS reading speed) were intercorrelated (Pearson product moment correlations) and assessed for concordance (intraclass correlation coefficients [ICC]) and agreement (Bland-Altman analysis) for indication of clinical usefulness. RESULTS: Nineteen accommodating IOL cases, 40 simultaneous contact lens cases, and 38 varifocal spectacle cases were evaluated. Other than CPS reading speed, all near visual acuity and reading metrics correlated well with each other (r>0.70, P<.001). Near visual acuity measured with uppercase letters was highly concordant (ICC, 0.78) and in close agreement with lowercase letters (+/- 0.17 logMAR). Near word acuity agreed well with reading acuity (+/- 0.16 logMAR), which in turn agreed well with near visual acuity measured with uppercase letters 0.16 logMAR). Concordance (ICC, 0.18 to 0.46) and agreement (+/- 0.24 to 0.30 logMAR) of CPS with the other near metrics was moderate. CONCLUSION: Measurement of near visual ability in presbyopia should be standardized to include assessment of near visual acuity with logMAR uppercase-letter optotypes, smallest logMAR print size that maintains maximum reading speed (CPS), and reading speed. J Cataract Refract Surg 2009; 35:1401-1409 (C) 2009 ASCRS and ESCRS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macular pigment (MP) is the collective name for three carotenoids, lutein, zeaxanthin and meso-zeaxanthin, which are found at high concentrations in the central macula. The macular carotenoids, like all carotenoids, are entirely of dietary origin. The term ‘macular pigment optical density’ (MPOD) refers to the peak concentration of MP in the retina, which varies from one individual to the next and is measurable in vivo. On account of its blue-light-filtering and antioxidant properties, MP has become a subject of interest with respect to age-related macular degeneration (AMD), the hypothesis being that MP helps to protect against AMD; the higher the MPOD, the lower the risk for AMD. Recently, a new MPOD-measuring device, the MPS 9000 (MPS), entered the ophthalmic market. Using this device, the research described here aimed to contribute new information to the MP literature. A second MPOD instrument, the Macular Pigment Reflectometer, was also used at times, but a reliability study (included in the thesis) demonstrated that it was unsuitable for use on its own. First, a series of exploratory investigations were undertaken to maximize the accuracy and consistency of MPOD measurements taken with the MPS; a protocol was established that substantially improved repeatability. Subsequently, a series of MPOD-based studies were conducted on anisometropia, South Asian race, blue-light-filtering contact lenses, and dietary modification with kale. The principle findings were as follows: interocular MPOD differences were not attributable to interocular refractive error differences; young adults of South Asian origin had significant gender-related MPOD differences (males>females, p<0.01), and they also had significantly higher MPOD than Caucasians (p<0.0005); wearing blue-light-filtering contact lenses for eight months did not affect MPOD; and dietary modification with kale for 16 weeks did not increase MPOD. This body of research adds new insights to MP knowledge, which in turn may contribute to MP knowledge in the context of AMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: The aim of the study was to determine, objectively and non-invasively, whether changes in accommodative demand modify differentially the peripheral refraction in emmetropic and myopic human eyes. METHODS: Forty subjects (19 male, 21 female) aged 20-30 years (mean 22.7 (SD 2.8) years), 21 emmetropes (mean spherical equivalent refractive error (MSE) -0.13 (SD 0.29) D) and 19 myopes (MSE -2.95 (SD 1.76) D) participated in the study. Ametropia was corrected with soft contact lenses (etafilcon A, 58% water content). Subjects viewed monocularly a stationary, high contrast (85%) Maltese cross at 0.0, 1.0, 2.0 and 3.0 D of accommodative demand and at 0, 10, 20 and 30 degrees field angle (nasal and temporal) through a +3.0 D Badal optical system. Static recordings of the accommodation response were obtained for each accommodative level, at each field angle, with an objective, open-view, infrared optometer. RESULTS: Peripheral mean spherical equivalent (M) data showed that the emmetropic cohort exhibited relative myopic shifts into the periphery, while the myopic group showed hypermetropic shifts. Increasing accommodative demand did not alter the peripheral refractive profile in either the temporal (p = 0.25) or nasal (p = 0.07) periphery with no differential accommodative effect between refractive groups in either the temporal (p = 0.77) or nasal (p = 0.73) field. Significant shifts in the J(0) astigmatic component were seen in the temporal (p<0.0005) and nasal (p<0.0005) fields with increasing eccentricity. Interaction effects between eccentricity and accommodative demand illustrated that increasing accommodative demand significantly altered the peripheral refractive profile in the temporal J(0) astigmatic component (p<0.0005). The nasal periphery, however, failed to show such an effect (p = 0.65). CONCLUSIONS: Alterations in peripheral refraction augmented by changes in ocular accommodation are relatively unaffected by refractive error for young, healthy human eyes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this thesis is to report the behaviour of mammalian cells with biocompatible synthetic polymers with potential for applications to the human body. Composite hydrogel materials were tested as possible keratoprosthetic devices. It was found that surface topography is an important consideration, pores, channels and fibres exposed on the surface of the hydrogels tested can have significant effects on the extent of cell adheson and proliferation. It is recommended that the core component is fabricated out of one of the following to provide a non cell adhesive base; A8, A11, A13, A22, A23. The haptic periphery fabricated out of one of the following would provide a cell adhesive composite; A16, A30, A33, A37, A38, A42, A43, A44. The presence of vitronectin in the ocular tissue appears to lead to higher cell adhesion to the posterior surface of a contact lens when compared to the anterior surface. Group IV contact lenses adhere more cells than Group II contact lenses - this may indicate that more protein (including vitronectin) is able to adhere to the contact lens due to the Group IV contact lenses high water content and ionic hydrogel matrix. Artificial lung surfactant analogues were found to be non cytotoxic but also decreased cell proliferation when tested at higher concentrations. Poly(lysine ethyl ester adipamide) [PLETESA] had the most favourable response on cell proliferation and commercial styrene/maleic anhydride (pMA/STY sp2) the most pronounced inhibitory response. The mode of action that decreases cell proliferation appears to be through membrane destabilization. Tissue culture well plates coated with PLETESA allowed cells to adhere in a concentration dependent manner, multilaminar liposomes possibly of PLETESA were observed in solution in PLETESA coated wells. Polyhydroxybutryate (PHB) and polyhydroxyvalerate (PHV) blends that contained hydroxyapatite were found to be the most cell adhesive material of those materials tested. The blends that were most susceptible to degradation adhered the most cells in initial stages of degradation. The initial slight increase in cell adhesion may be due to the increased rugosity of the material. As the degradation continued the number of cells adhering to the samples decreased, this may indicate that the polarity was inhibitory to cell adhesion during the later stages of degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is concerned with the analysis of tear proteins, paying particular attention to the state of the tears (e.g. non-stimulated, reflex, closed), created during sampling, and to assess their interactions with hydrogel contact lenses. The work has involved the use of a variety of biochemical and immunological analytical techniques for the measurement of proteins, (a), in tears, (b), on the contact lens, and (c), in the eluate of extracted lenses. Although a diverse range of tear components may contribute to contact lens spoilation, proteins were of particular interest in this study because of their theoretical potential for producing immunological reactions. Although normal host proteins in their natural state are generally not treated as dangerous or non-self, those which undergo denaturation or suffer a conformational change may provoke an excessive and unnecessary immune response. A novel on-lens cell based assay has been developed and exploited in order to study the role of the ubiquitous cell adhesion glycoprotein, vitronectin, in tears and contact lens wear under various parameters. Vitronectin, whose levels are known to increase in the closed eye environment and shown here to increase during contact lens wear, is an important immunoregulatory protein and may be a prominent marker of inflammatory activity. Immunodiffusion assays were developed and optimised for use in tear analysis, and in a series of subsequent studies used for example in the measurement of albumin, lactoferrin, IgA and IgG. The immunodiffusion assays were then applied in the estimation of the closed eye environment; an environment which has been described as sustaining a state of sub-clinical inflammation. The role and presence of a lesser understood and investigated protein, kininogen, was also estimated, in particular, in relation to contact lens wear. Difficulties arise when attempting to extract proteins from the contact lens in order to examine the individual nature of the proteins involved. These problems were partly alleviated with the use of the on-lens cell assay and a UV spectrophotometry assay, which can analyse the lens surface and bulk respectively, the latter yielding only total protein values. Various lens extraction methods were investigated to remove protein from the lens and the most efficient was employed in the analysis of lens extracts. Counter immunoelectrophoresis, an immunodiffusion assay, was then applied to the analysis of albumin, lactoferrin, IgA and IgG in the resultant eluates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tear component deposition onto contact lenses is termed `spoilation' and occurs due to the interaction of synthetic polymers with their biological fluid environment. Spoilation phenomena alter the physico-chemical properties of hydrophilic contact lenses, diminishing the optical properties of the lens; causing discomfort and complications for the wearer. Eventually these alterations render the lens unwearable. The primary aim of this interdisciplinary study was to develop analytical techniques capable of analysing the minute quantities of biological deposition involved, in particular the lipid fraction. Prior to this work such techniques were unavailable for single contact lenses. It is envisaged that these investigations will further the understanding of this biological interfacial conversion. Two main analytical techniques were developed: a high performance liquid chromatography (HPLC) technique and fluorescence spectrofluorimetry. The HPLC method allows analysis of a single contact lens and provided previously unavailable valuable information about variations in the lipid profiles of deposited contact lenses and patient tear films. Fluorescence spectrophotofluorimetry is a sensitive non-destructive technique for observing changes in the fluorescence intensity of biological components on contact lenses. The progression and deposition of tear materials can be monitored and assessed for both in vivo and in vitro spoiled lenses using this technique. An improved in vitro model which is comparable to tears and chemically mimics ocular spoilation was also developed. This model allows the controlled study of extrinsic factors and hydrogel compositions. These studies show that unsaturated tear lipids, probably unsaturated fatty acids, are involved in the interfacial conversion of hydrogel lenses, rendering them incompatible with the ocular microenvironment. Lipid interaction with the lens surface then facilitates secondary deposition of other tear components. Interaction, exchange and immobilisation (by polymerisation) of the lipid layer appears to occur before the final and rapid growth of more complex, insoluble discrete deposits, sometimes called `white spots'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypercoiling poly(styrene-alt-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. The association of PSMA with lipid 2-dilauryl-sn-glycero-3-phosphocholine (DLPC) produces polymer-lipid complex analogues to lipoprotein assemblies found in lung surfactant. These complexes represent a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. The primary aim of this study was to develop a better understanding of PSMA-DLPC association by using physical and spectroscopic techniques. Ternary phase diagrams were constructed to examine the effects of various factors, such as molecular weight, pH and temperature on PSMA-DLPC association. 31P-NMR spectroscopy was used to investigate the polymorphic changes of DLPC upon associating with PSMA. The Langmuir Trough technique and surface tension measurement were used to explore the association behaviour of PSMA both at the interface and in the bulk of solution, as well as its interaction with DLPC membranes. The ultimate aim of this study was to investigate the potential use of PSMA-DLPC complexes to improve the bioavailability and therapeutic efficacy of a range of drugs. Typical compounds of ophthalmic interest range from new drugs such as Pirenzepine, which has attracted clinical interest for the control of myopia progression, to the well-established family of non-steroid anti-inflammatory drugs. These drugs have widely differing structures, sizes, solubility profiles and pH-sensitivities. In order to understand the ways in which these characteristics influence incorporation and release behaviour, the marker molecules Rhodamine B and Oil Red O were chosen. PSMA-DLPC complexes, incorporated with marker molecules and Pirenzepine, were encapsulated in hydrogels of the types used for soft contact lenses. Release studies were conducted to examine if this smart drug delivery system can retain such compounds and deliver them at a slow rate over a prolonged period of time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.