872 resultados para discrete wavelet transform
Resumo:
Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.
Resumo:
In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed.
Resumo:
In the field of multiscale analysis of signals, including images, the wavelet transform is one of the most attractive and powerful tool due to its ability to focus on signals structures at different scales. Wavelet Transform at different scales is successfully applied to image characterization (which can be applied to a watermarking scheme) and multiscale singularity detection and processing. In this work we show further research of computation of multifractals properties such as the multifractal spectrum (D(alpha)) applied to dye stained images of natural terrain. This can be useful for statically describing preferential flow path geometry.
Resumo:
This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.
Resumo:
Power line interference is one of the main problems in surface electromyogram signals (EMG) analysis. In this work, a new method based on the stationary wavelet packet transform is proposed to estimate and remove this kind of noise from EMG data records. The performance has been quantitatively evaluated with synthetic noisy signals, obtaining good results independently from the signal to noise ratio (SNR). For the analyzed cases, the obtained results show that the correlation coefficient is around 0.99, the energy respecting to the pure EMG signal is 98–104%, the SNR is between 16.64 and 20.40 dB and the mean absolute error (MAE) is in the range of −69.02 and −65.31 dB. It has been also applied on 18 real EMG signals, evaluating the percentage of energy respecting to the noisy signals. The proposed method adjusts the reduction level to the amplitude of each harmonic present in the analyzed noisy signals (synthetic and real), reducing the harmonics with no alteration of the desired signal.
Resumo:
Population balances of polymer species in terms 'of discrete transforms with respect to counts of groups lead to tractable first order partial differential equations when ali rate constants are independent of chain length and loop formation is negligible [l]. Average molecular weights in the absence ofgelation are long known to be readily found through integration of an initial value problem. The extension to size distribution prediction is also feasible, but its performance is often lower to the one provided by methods based upon real chain length domain [2]. Moreover, the absence ofagood starting procedure and a higher numerical sensitivity hás decisively impaired its application to non-linear reversibly deactivated polymerizations, namely NMRP [3].
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Nonlinear Dynamics, Vol. 29
Resumo:
Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods. In this work, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction in DPCT. We also investigate the use of one of the models with a modern image reconstruction algorithm for performing few-view image reconstruction of a tissue specimen.
Resumo:
The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables. © 2013, Society for Industrial and Applied Mathematics