965 resultados para dilute acid hydrolysis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lysergic acid diethylamide (LSD) is a potent hallucinogen that is primarily metabolized to 2-oxo-3-hydroxy-LSD (O-H-LSD) and N-desmethyl-LSD (nor-LSD) by cytochrome P450 complex liver enzymes. Due to its extensive metabolism, there still is an interest in the identification of new metabolites and new routes of its metabolism in humans. In the present study, we investigated whether LSD could be a substrate for horseradish peroxidase or myeloperoxidase (MPO). Using liquid chromatography coupled to UV detection and electrospray ionization mass spectrometry (LC-UV-ESI-MS), we found that both peroxidases were capable of metabolizing LSD to the same compounds that have been observed in vivo (i.e., O-H-LSD and nor-LSD). In addition, we found another major metabolite, N,N-diethyl-7-formamido-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide (FOMBK), which is an opened indolic ring compound. Hydrolysis of FOMBK led to the deformylated compound 7-amino-N,N-diethyl-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide. The reactions of LSD with the peroxidases were chemiluminescent and sensitive to inhibition by reactive oxygen scavengers, which indicated that the classic peroxidase cycle is involved in this new alternative metabolic pathway. Considering that MPO is abundant in immune cells and also present in the central nervous system, the degradation pathway described in this study suggests a possible route of LSD metabolism that may occur concurrently with the in vivo reaction catalyzed by the cytochrome P450 system.
Resumo:
Objectives: This study evaluated the surface microhardness (SM) and roughness (SR) alterations of dental resins submitted to pH catalysed degradation regimens. Methods: Thirty discs of each TPH Spectrum (Dentsply), Z100 (3M-ESPE), or an unfilled experimental bis-GMA/TEGDMA resin were fabricated, totaling 90 specimens. Each specimen was polymerized for 40 s, finished, polished, and individually stored in deionized water at 37 degrees C for 7 days. Specimens were randomly assigned to the following pH solutions: 1.0, 6.9 or 13, and for SM or SR evaluations (n = 5). Baseline Knoop-hardness of each specimen was obtained by the arithmetic mean of five random micro-indentations. For SR, mean baseline values were obtained by five random surface tracings (R-a). Specimens were then soaked in one of the following storage media at 37 degrees C: (1) 0.1 M, pH 1.0 HCl, (2) 0.1 N, pH 13.0 NaOCl, and (3) deionized water (pH 6.9). Solutions were replaced daily. Repeated SM and SR measurements were performed at the 3-, 7- and 14-day storage time intervals. For each test and resin, data were analysed by two-way ANOVA followed by Tukey's test (alpha = 0.05). Results: There was significant decrease in SM and increase in SR values of composites after storage in alkaline medium. TPH and Z100 presented similar behaviour for SM and SR after immersion in the different media, whereas unfilled resin values showed no significant change. Conclusion: Hydrolytic degradation of resin composites seems to begin with the silanized inorganic particles and therefore depend on their composition. Significance: To accelerate composite hydrolysis and produce quick in vitro microstructural damage, alkaline medium appears to be more suitable than acidic medium. Contemporary resin composite properties seem to withstand neutral and acidic oral environments tolerably well. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.
Resumo:
Poly(ethylene glycol) (PEG) is used in a broad range of applications due to its unique combination of properties and is approved use in formulations for body-care products, edibles and medicine. This thesis aims at the synthesis and characterization of novel heterofunctional PEG structures and the establishment of diethyl squarate as a suitable linker for the covalent attachment to proteins. Chapter 1 is an introduction on the properties and applications of PEG as well as the fascinating chemistry of squaric acid derivatives. In Chapter 1.1, the synthesis and properties of PEG are described, and the versatile applications of PEG derivatives in everyday products are emphasized with a focus on PEG-based pharmaceuticals and nonionic surfactants. This chapter is written in German, as it was published in the German Journal Chemie in unserer Zeit. Chapter 1.2 deals with PEGs major drawbacks, its non-biodegradability, which impedes parenteral administration of PEG conjugates with polyethers exceeding the renal excretion limit, although these would improve blood circulation times and passive tumor targeting. This section gives a comprehensive overview of the cleavable groups that have been implemented in the polyether backbone to tackle this issue as well as the synthetic strategies employed to accomplish this task. Chapter 1.3 briefly summarizes the chemical properties of alkyl squarates and the advantages in protein conjugation chemistry that can be taken from its use as a coupling agent. In Chapter 2, the application of diethyl squarate as a coupling agent in the PEGylation of proteins is illustrated. Chapter 2.1 describes the straightforward synthesis and characterization of squaric acid ethyl ester amido PEGs with terminal hydroxyl functions or methoxy groups. The reactivity and selectivity of theses activated PEGs are explored in kinetic studies on the reactions with different lysine and other amino acid derivatives, followed by 1H NMR spectroscopy. Further, the efficient attachment of the novel PEGs to a model protein, i.e., bovine serum albumin (BSA), demonstrates the usefulness of the new linker for the PEGylation with heterofunctional PEGs. In Chapter 2.3 initial studies on the biocompatibility of polyether/BSA conjugates synthesized by the squaric acid mediated PEGylation are presented. No cytotoxic effects on human umbilical vein endothelial cells exposed to various concentrations of the conjugates were observed in a WST-1 assay. A cell adhesion molecule - enzyme immunosorbent assay did not reveal the expression of E-selectin or ICAM-1, cell adhesion molecules involved in inflammation processes. The focus of Chapter 3 lies on the syntheses of novel heterofunctional PEG structures which are suitable candidates for the squaric acid mediated PEGylation and exhibit superior features compared to established PEGs applied in bioconjugation. Chapter 3.1 describes the synthetic route to well-defined, linear heterobifunctional PEGs carrying a single acid-sensitive moiety either at the initiation site or at a tunable position in the polyether backbone. A universal concept for the implementation of acetal moieties into initiators for the anionic ring-opening polymerization (AROP) of epoxides is presented and proven to grant access to the degradable PEG structures aimed at. The hydrolysis of the heterofunctional PEG with the acetal moiety at the initiating site is followed by 1H NMR spectroscopy in deuterium oxide at different pH. In an exploratory study, the same polymer is attached to BSA via the squarate acid coupling and subsequently cleaved from the conjugate under acidic conditions. Furthermore, the concept for the generation of acetal-modified AROP initiators is demonstrated to be suitable for cholesterol, and the respective amphiphilic cholesteryl-PEG is cleaved at lowered pH. In Chapter 3.2, the straightforward synthesis of α-amino ω2-dihydroxyl star-shaped three-arm PEGs is described. To assure a symmetric length of the hydroxyl-terminated PEG arms, a novel AROP initiator is presented, who’s primary and secondary hydroxyl groups are separated by an acetal moiety. Upon polymerization of ethylene oxide for these functionalities and subsequent cleavage of the acid-labile unit no difference in the degree of polymerization is seen for both polyether fragments.
Resumo:
Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.
Resumo:
The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanide.
Resumo:
A method using gas chromatography-mass spectrometry (GC-MS) and solid-phase extraction (SPE) was developed for the determination of ajulemic acid (AJA), a non-psychoactive synthetic cannabinoid with interesting therapeutic potential, in human plasma. When using two calibration graphs, the assay linearity ranged from 10 to 750 ng/ml, and 750 to 3000 ng/ml AJA. The intra- and inter-day precision (R.S.D., %), assessed across the linear ranges of the assay, was between 1.5 and 7.0, and 3.6 and 7.9, respectively. The limit of quantitation (LOQ) was 10 ng/ml. The amount of AJA glucuronide was determined by calculating the difference in the AJA concentration before ("free AJA") and after enzymatic hydrolysis ("total AJA"). The present method was used within a clinical study on 21 patients suffering from neuropathic pain with hyperalgesia and allodynia. For example, plasma levels of 599.4+/-37.2 ng/ml (mean+/-R.S.D., n=9) AJA were obtained for samples taken 2 h after the administration of an oral dose of 20 mg AJA. The mean AJA glucuronide concentration at 2h was 63.8+/-127.9 ng/ml.
Resumo:
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.
Resumo:
The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.
Resumo:
Biodegradable polymers have experienced increased attention in recent years because of their wide range of applications in biomedical, packaging and agriculture fields. PLA, poly(lactic acid), is a linear aliphatic biodegradable thermoplastic polyester, with good mechanical properties, thermal stability, processability and low environmental impact, widely used as an alternative to conventional polymers. PLA products can be recycled after use either by remelting and reprocessing the material, or by hydrolysis to basic lactic acid [1]. The object of this communication is the study of the possible variation in physical properties induced by sub sequent reprocessing cycles of PLA.
Resumo:
The semiempirical PM3 method, calibrated against ab initio HF/6–31+G(d) theory, has been used to elucidate the reaction of 1,2-dichloroethane (DCE) with the carboxylate of Asp-124 at the active site of haloalkane dehalogenase of Xanthobacter autothropicus. Asp-124 and 13 other amino acid side chains that make up the active site cavity (Glu-56, Trp-125, Phe-128, Phe-172, Trp-175, Leu-179, Val-219, Phe-222, Pro-223, Val-226, Leu-262, Leu-263, and His-289) were included in the calculations. The three most significant observations of the present study are that: (i) the DCE substrate and Asp-124 carboxylate, in the reactive ES complex, are present as an ion-molecule complex with a structure similar to that seen in the gas-phase reaction of AcO− with DCE; (ii) the structures of the transition states in the gas-phase and enzymatic reaction are much the same where the structure formed at the active site is somewhat exploded; and (iii) the enthalpies in going from ground states to transition states in the enzymatic and gas-phase reactions differ by only a couple kcal/mol. The dehalogenase derives its catalytic power from: (i) bringing the electrophile and nucleophile together in a low-dielectric environment in an orientation that allows the reaction to occur without much structural reorganization; (ii) desolvation; and (iii) stabilizing the leaving chloride anion by Trp-125 and Trp-175 through hydrogen bonding.