912 resultados para diffusion coefficients


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique of surface modification by diffusion coating for AZ91D alloy was developed. A 1.0-2.0-mm alloy layer, which has hardness four to five times higher than the substrate metal, was formed after the treatment. Consequent solution treatment and aging could further improve the hardness of the alloy layer. Microstructure and chemical composition were investigated using optical microscope and electron probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface diffusion of strongly adsorbing hydrocarbon vapours on activated carbon was measured by using a constant molar flow method (D.D. Do, Dynamics of a semi-batch adsorber with constant molar supply rate: a method for studying adsorption rate of pure gas, Chem. Eng. Sci. 50 (1995) 549), where pure adsorbate is introduced into a semi-batch adsorber at a constant molar flow rate. The surface diffusivity was determined from the analysis of pressure response versus time, using a linear mathematical model developed earlier. To apply the linear theory over the non-linear range of the adsorption isotherm, we implement a differential increment method on the system which is initially equilibrated with some pre-determined loading. By conducting the experiments at different initial loadings, the surface diffusivity can be extracted as a function of loading. Propane, n-butane, n-hexane, benzene, and ethanol were used as diffusing adsorbate on a commercial activated carbon. It is found that the surface diffusivity of these strongly adsorbing vapours increases rapidly with loading, and the surface diffusion flux contributes significantly to the total flux and cannot be ignored. The surface diffusivity increases with temperature according to the Arrhenius law, and for the paraffins tested it decreases with the molecular weight of the adsorbate. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hyphenated instrumental approach has been used to obtain reliable values for the propagation rate coefficients as a function of conversion for polymerizations of methyl methacrylate (MMA) and a mixture of MMA and ethyleneglycol dimethacrylate (EGDMA) with a 1:1 concentration of double bonds, from near the onset of the Trommsdorf region into the glass region. ESR spectroscopy was used to measure the radical concentration while FT-NIR fibre-optic spectroscopy was employed to measure instantaneously the double-bond concentration within the temperature-controlled cavity of the ESR instrument during polymerization. The advantage of this approach to the measurement of the rate coefficient is that it is equally applicable to branching and linear polymerizations. For the polymerization of methyl methacrylate, the values of the rate coefficient at the lowest conversions at which reliable values could be obtained were in agreement with recently reported values obtained by the PLP-SEC method. For the lowest conversions, the values obtained were 403 1 mol(-1) s(-1) at 306 K for MMA and 5201 mol(-1) s(-1) at 310 K for a 1:1 mixture of MMA and EGDMA. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of the transport of methane in cylindrical silica mesopores have been performed using equilibrium and nonequilibrium molecular dynamics (NEMD) as well as dual control volume grand canonical molecular dynamics methods. It is demonstrated that all three techniques yield the same transport coefficient even in the presence of viscous flow. A modified locally averaged density model for viscous flow, combined with consideration of wall slip through a frictional condition, gives a convincing interpretation of the variation of the transport coefficient over a wide range of densities, and for various pore sizes and temperatures. Wall friction coefficients extracted from NEMD simulations are found to be consistent with momentum transfer arguments, and the approach is shown to be more meaningful than the classical slip length concept. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the transport of a subcritical Lennard-Jones fluid in a cylindrical nanopore, using a combination of equilibrium and nonequilibrium as well as dual control volume grand canonical molecular dynamics methods. We show that all three techniques yield the same value of the transport coefficient for diffusely reflecting pore walls, even in the presence of viscous transport. We also demonstrate that the classical Knudsen mechanism is not manifested, and that a combination of viscous flow and momentum exchange at the pore wall governs the transport over a wide range of densities.