941 resultados para differentially expressed


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GATA family of transcription factors establishes genetic networks that control developmental processes including hematopoiesis, vasculogenesis, and cardiogenesis. We found that GATA-1 strongly activates transcription of the Tac-2 gene, which encodes proneurokinin-B, a precursor of neurokinin-B (NK-B). Neurokinins function through G protein-coupled transmembrane receptors to mediate diverse physiological responses including pain perception and the control of vascular tone. Whereas an elevated level of NK-B was implicated in pregnancy-associated pre-eclampsia ( Page, N. M., Woods, R. J., Gardiner, S. M., Lomthaisong, K., Gladwell, R. T., Butlin, D. J., Manyonda, I. T., and Lowry, P. J. ( 2000) Nature 405, 797 - 800), the regulation of NK-B synthesis and function are poorly understood. Tac-2 was expressed in normal murine erythroid cells and was induced upon ex vivo erythropoiesis. An estrogen receptor fusion to GATA-1 (ER-GATA-1) and endogenous GATA-1 both occupied a region of Tac-2 intron-7, which contains two conserved GATA motifs. Genetic complementation analysis in GATA-1-null G1E cells revealed that endogenous GATA-2 occupied the same region of intron-7, and expression of ER-GATA-1 displaced GATA-2 and activated Tac-2 transcription. Erythroid cells did not express neurokinin receptors, whereas aortic and yolk sac endothelial cells differentially expressed neurokinin receptor subtypes. Since NK-B induced cAMP accumulation in yolk sac endothelial cells, these results suggest a new mode of vascular regulation in which GATA-1 controls NK-B synthesis in erythroid cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as N-15. By utilising hydroponic media that contain N-15 inorganic salts as the sole nitrogen source, near to 100% N-15-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled N-14- and N-15-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of N-14/N-15 peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the N-14 and N-15 peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct N-14 and N-15 peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deleterious impact of cigarette smoking on cardiovascular health may be in part attributable to a free radical mediated proinflammatory response in circulating monocytes. In the current investigation, the impact of vitamin C supplementation on monocyte gene expression was determined in apoE4 smokers versus non-smokers. A total of 10 smokers and 11 non-smokers consumed 60 mg/day of vitamin C for four weeks and a fasting blood sample was taken at baseline and post-intervention for the determination of plasma vitamin C and monocyte gene expression profiles using cDNA array and real time PCR. In apoE4 smokers, supplementation resulted in a 43% increase in plasma vitamin C concentrations. Furthermore, a number of genes were differentially expressed more than 2-fold in response to treatment, including a downregulation of the proinflammatory mediators tumor necrosis factor (TNF) beta, TNF receptor, neurotrophin-3 growth factor receptor, and monocyte chemoattractant protein I receptor. The study has identified a number of molecular mechanisms underlying the benefit of vitamin C supplementation in smokers. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traits used by bacteria to enhance ecological performance in natural environments are not well understood. Recognizing that the saprophytic plant-colonizing bacterium Pseudomonas fluorescens SBW25 experiences temperatures in its natural environment significantly cooler than the 28°C routinely used in the laboratory, we identified proteins differentially expressed between 28°C and the more environmentally relevant temperature of 14°C. Of 2102 protein isoforms, 32 were temperature responsive and identified by mass spectrometry. Seven of these (OmpR, MucD, GuaD, OsmY and three of unknown function, Tee1, Tee2 and Tee3) were selected for genetic and ecological analyses. In each instance, changes in protein expression with temperature were mirrored by parallel transcriptional changes. The fitness contribution of the genes encoding each of the seven proteins was larger at 14°C than 28°C and included two cases of trade-offs (enhanced fitness at one temperature and reduced fitness at the other – mucD and tee2 deletions). The relationship between the fitness effects of genes in vitro and in vivo was variable, but two temperature-responsive genes – osmY and mucD – contribute substantially to the ability of P. fluorescens to colonize the plant environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Episodes of high temperature at anthesis, which in rice is the most sensitive stage to temperature, are expected to occur more frequently in future climates. The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice (Oryza sativa L.) genotypes. Plants were exposed to 6 h of high (38 °C) and control (29 °C) temperature at anthesis and spikelets collected for morphological and proteomic analysis. Moroberekan was the most heat-sensitive genotype (18% spikelet fertility at 38 °C), while IR64 (48%) and N22 (71%) were moderately and highly heat tolerant, respectively. There were significant differences among the genotypes in anther length and width, apical and basal pore lengths, apical pore area, and stigma and pistil length. Temperature also affected some of these traits, increasing anther pore size and reducing stigma length. Nonetheless, variation in the number of pollen on the stigma could not be related to measured morphological traits. Variation in spikelet fertility was highly correlated (r=0.97, n=6) with the proportion of spikelets with ≥20 germinated pollen grains on the stigma. A 2D-gel electrophoresis showed 46 protein spots changing in abundance, of which 13 differentially expressed protein spots were analysed by MS/MALDI-TOF. A cold and a heat shock protein were found significantly up-regulated in N22, and this may have contributed to the greater heat tolerance of N22. The role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus × euramericana (clone I-214) to elevated [CO2] in a FACE (free-air CO2 enrichment) experiment.• Gene expression was sensitive to elevated [CO2] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO2 environments. For young leaves most differentially expressed genes were upregulated in elevated [CO2], while in semimature leaves most were downregulated in elevated [CO2].• For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO2 was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT–PCR.• This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sigma B (σB) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the ΔsigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The ΔsigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that σB contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the ΔsigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of σB in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the ΔsigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of σB. It also demonstrated clear roles for σB in both osmotic and low-pH stress tolerance and identified specific components of the σB regulon that contribute to the responses observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole-genome transcriptome profiling is revealing how biological systems are regulated at the transcriptional level. This study reports the development of a robust method to profile and compare the transcriptomes of two nonmodel plant species, Thlaspi caerulescens, a zinc (Zn) hyperaccumulator, and Thlaspi arvense, a nonhyperaccumulator, using Affymetrix Arabidopsis thaliana ATH1-121501 GeneChip (R) arrays (Affymetrix, Santa Clara, CA, USA). Transcript abundance was quantified in the shoots of agar- and compost-grown plants of both species. Analyses were optimized using a genomic DNA (gDNA)-based probe-selection strategy based on the hybridization efficiency of Thlaspi gDNA with corresponding A. thaliana probes. In silico alignments of GeneChip (R) probes with Thlaspi gene sequences, and quantitative real-time PCR, confirmed the validity of this approach. Approximately 5000 genes were differentially expressed in the shoots of T. caerulescens compared with T. arvense, including genes involved in Zn transport and compartmentalization. Future functional analyses of genes identified as differentially expressed in the shoots of these closely related species will improve our understanding of the molecular mechanisms of Zn hyperaccumulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo 'Piel de sapo' ('PS') and C. melo 'Pat 81', with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. Results: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. 'PS' responded with a more rapid infection response than 'Pat 81' at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in 'PS' declined from 451 to 359, while the total number of differentially expressed transcripts in 'Pat 81' increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in 'Pat 81' compared to 'PS' suggested that JA response might be partially responsible for their observed differences in resistance. Conclusions: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation.