985 resultados para dentin microhardness
Resumo:
Background: Ocular prosthesis materials should have specific properties for their indication and durability; therefore, it is important to investigate their physical behaviour when affected by several disinfectants. Objectives: This study evaluated the influence of different disinfecting solutions on the microhardness and surface roughness of acrylic resins for ocular prosthesis. Materials and Methods: Fifty samples simulating ocular prostheses were fabricated with N1 resin and colourless resin and divided (n = 10) according to the disinfectant used: neutral soap, Opti-free, Efferdent, 1% hypochlorite (HYC) and 4% chlorhexidine (CHX). Samples were stored in saline solution at 37°C and disinfected during 120 days. Both microhardness and roughness were investigated before, after 60 days and 120 days of disinfection and storage. Microhardness was measured using a microhardner and the roughness with a roughness device. Results: N1 resin showed lower microhardness when compared with colourless resin (p < 0.05). HYC and CHX groups exhibited the highest change of microhardness and roughness values (p < 0.05). An increase in roughness and reduction in microhardness of ocular acrylic resins were observed after both periods of disinfection and storage (p < 0.05). Conclusion: Both disinfection/storage periods affected the microhardness and roughness values of the samples. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
The aim of this study was to evaluate the possibility of fluoride solutions applied to enamel to protect pulp cells against the trans-enamel and transdentinal cytotoxicity of a 16% carbamide peroxide (CP) bleaching gel. The CP gel was applied to enamel/ dentin discs adapted to artificial pulp chambers (8 h/day) during 1, 7 or 14 days, followed by fluoride (0.05% or 0.2%) application for 1 min. The extracts (culture medium in contact with dentin) were applied to MDPC-23 cells for 1 h, and cell metabolism (MTT assay), alkaline phosphatase (ALP) activity and cell membrane damage (flow cytometry) were analyzed. Knoop microhardness of enamel was also evaluated. Data were analyzed statistically by ANOVA and Kruskal-Wallis tests (a=0.05). For the MTT assay and ALP activity, significant reductions between the control and the bleached groups were observed (p<0.05). No statistically significant difference occurred among bleached groups (p>0.05), regardless of fluoride application or treatment days. Flow cytometry analysis demonstrated 30% of cell membrane damage in all bleached groups. After 14 days of treatment, the fluoride-treated enamel presented significantly higher microhardness values than the bleached-only group (p<0.05). It was concluded that, regardless of the increase in enamel hardness due to the application of fluoride solutions, the treated enamel surface did not prevent the toxic effects caused by the 16% CP gel to odontoblast-like cells.
Resumo:
The aim of this study was to evaluate the effects of different light-curing units and resin cement curing types on the bond durability of a feldspathic ceramic bonded to dentin. The crowns of 40 human molars were sectioned, exposing the dentin. Forty ceramic blocks of VITA VM7 were produced according to the manufacturer's recommendations. The ceramic surface was etched with 10% hydrofluoric acid/60s and silanized. The dentin was treated with37% phosphoric acid/15s, and the adhesive was applied. The ceramic blocks were divided and cemented to dentin according to resin cement/RC curing type(dual-and photocured), light-curing unit (halogen light/QTH and LED), and storage conditions (dry and storage/150 days + 12,000 cycles/thermocycling). All blocks were stored in distilled water (37°C/24h) and sectioned (n = 10): G1-QTH + RC Photo, G2-QTH + RC Dual, G3-LED + RC Photo, G4-LED + RC Dual. Groups G5, G6, G7, and G8 were obtained exactly as G1 through G4, respectively, and then stored and thermocycled. Microtensile bond strength tests were performed (EMIC), and data were statistically analyzed by ANOVA and Tukey's test (5%). The bond strength values (MPa) were: G1-12.95 (6.40)ab; G2-12.02 (4.59)ab; G3-13.09 (5.62)ab; G4-15.96 (6.32)a; G5-6.22 (5.90)c; G6-9.48 (5.99)bc; G7-12.78 (11.30)ab; and G8-8.34 (5.98)bc. The same superscript letters indicate no significant differences. Different light-curing units affected the bond strength betweenceramic cemented to dentin when the photocured cement was used, and only after aging (LED>QTH). There was no difference between the effects of dual-and photo-cured resin-luting agents on the microtensile bond strength of the cement used in this study.
Resumo:
The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins. © 2013 Informa UK Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the effect of 16% carbamide peroxide (Whiteness Perfect/FGM) on the Vickers microhardness and flexural strength of the restorative composites Filtek Z100 (hybrid), Filtek Z350 (nanofill), Brilliant (micro-hybrid) and Opallis (micro-hybrid). Discshaped (4×2 mm; n=5) and bar-shaped (12×2×1 mm; n=10) specimens of each restorative material were randomly divided into 2 groups: (G1) 16 weeks stored in distilled water; (G2) 16 weeks stored in distilled water, with 16% carbamide peroxide application during 6 h per day for the last 4 weeks. The mechanical properties were evaluated using a Vickers microhardness tester and a mechanical testing machine. Data were analyzed by twoway ANOVA and Tukey's (HSD) post-hoc test (α=0.05). Filtek Z100 presented the highest microhardness value, followed by Filtek Z350 and finally by Brilliant and Opallis (p=0.00). Filtek Z100 and Brilliant exhibited the highest flexural strength value, followed by Filtek Z350 and Opallis (p=0.00). Bleaching treatment decreased significantly microhardness of Brilliant and Opallis (p=0.00). The flexural strength of all studied materials was not affected by the home bleaching (p=0.28).
Resumo:
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.
Resumo:
The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics.
Resumo:
The search for new instruments to promote an appropriate cervical preparation has led to the development of new rotary instruments such as TripleGates. However, to the best of the authors' knowledge, there is no study evaluating TripleGates effect on the “risk zone” of mandibular molars. Objectives: The aim of this study was to evaluate the effects of a crown-down sequence of Gates-Glidden and TripleGates burs on the remaining cervical dentin thickness and the total amount of dentin removed from the root canals during the instrumentation by using cone beam computed tomography. The number of separated instruments was also evaluated. Material and Methods: Mesial roots of 40 mandibular first molars were divided into 2 equal groups: crown-down sequence of Gates-Glidden (#3, #2, #1) and TripleGates burs. Cervical dentin thickness and canal area were measured before and after instrumentation by using cone beam computed tomography and image analysis software. Student’s t-test was used to determine significant differences at p<0.05. Results: No significant differences (p>0.05) were observed between the instruments, regarding the root canal area and dentin wall thickness. Conclusion: Both tested instruments used for cervical preparation were safe to be used in the mesial root canal of mandibular molars.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)