928 resultados para dentin bonding
Resumo:
A balanced planar r.f. powered magnetron sputter source has been used to deposit carbon nitride films from a graphite target under various conditions. Sample temperature, bias voltage and nitrogen content in the gas mixture were varied. The effects of oxygen, methane and ammonia on the film growth were also studied. Special attention was paid to the effects of the deposition parameters on the structure of the films, in particular the hybridisation of the carbon and nitrogen bonding. The chemical bonding of the carbon and nitrogen atoms was studied by electron energy loss spectroscopy (EELS). The chemical composition was evaluated by Rutherford back-scattering. The intensity of transitions to π antibonding orbitals, as revealed by EELS, was found to increase with the nitrogen content in the films. Ion bombardment of the films during growth and the addition of oxygen or hydrogen-rich gases further increased the proportion of π bonds of both the carbon and nitrogen atoms. It is suggested that the increase in the transitions to μ antibond orbitals is to be explained by increased sp2 or possibly sp hybridisation of the carbon and nitrogen. Also, the effect of annealing on the bonding of nitrogen rich films after deposition was tested. The changes caused by nitrogen and deposition conditions are consistent with previous reports on the formation of paracyanogen structures.
Resumo:
Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.
Resumo:
Background: Dentin phosphoprotein ( DPP) is the most abundant non-collagenous protein in dentin, which is highly phosphorylated and plays key roles in dentin biomineralisation. The aetiology of isolated hereditary dentin disorders in most affected familie