330 resultados para decoupling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world’s major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd (clay-silt) < |1.| A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts is probably best explained by preferential alteration of feldspars and/or accessory mineral phases. Importantly, this finding clearly indicates that silicate weathering can lead to decoupling of REE between different grain-size fractions, with implications for sediment provenance studies. Finally, we propose a set of values for a World River Average Clay (WRAC) and Average Silt (WRAS), which provide new estimates for the average composition of the weathered and eroded upper continental crust, respectively, and could be used for future comparison purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtual-build-to-order (VBTO) is a form of order fulfilment system in which the producer has the ability to search across the entire pipeline of finished stock, products in production and those in the production plan, in order to find the best product for a customer. It is a system design that is attractive to Mass Customizers, such as those in the automotive sector, whose manufacturing lead time exceeds their customers' tolerable waiting times, and for whom the holding of partly-finished stocks at a fixed decoupling point is unattractive or unworkable. This paper describes and develops the operational concepts that underpin VBTO, in particular the concepts of reconfiguration flexibility and customer aversion to waiting. Reconfiguration is the process of changing a product's specification at any point along the order fulfilment pipeline. The extent to which an order fulfilment system is flexible or inflexible reveals itself in the reconfiguration cost curve, of which there are four basic types. The operational features of the generic VBTO system are described and simulation is used to study its behaviour and performance. The concepts of reconfiguration flexibility and floating decoupling point are introduced and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Pacific oyster, spermatozoa are characterized by a remarkably long movement phase (i.e., over 24 h) sustained by a capacity to maintain intracellular ATP level. To gain information on oxidative phosphorylation (OXPHOS) functionality during the motility phase of Pacific oyster spermatozoa, we studied 1) changes in spermatozoal mitochondrial activity, that is, mitochondrial membrane potential (MMP), and intracellular ATP content in relation to motion parameters and 2) the involvement of OXPHOS for spermatozoal movement using carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The percentage of motile spermatozoa decreased over a 24 h movement period. MMP increased steadily during the first 9 h of the movement phase and was subsequently maintained at a constant level. Conversely, spermatozoal ATP content decreased steadily during the first 9 h postactivation and was maintained at this level during the following hours of the movement phase. When OXPHOS was decoupled by CCCP, the movement of spermatozoa was maintained 2 h and totally stopped after 4 h of incubation, whereas spermatozoa were still motile in the control after 4 h. Our results suggest that the ATP sustaining flagellar movement of spermatozoa may partially originate from glycolysis or from mobilization of stored ATP or from potential phosphagens during the first 2 h of movement as deduced by the decoupling by CCCP of OXPHOS. However, OXPHOS is required to sustain the long motility phase of Pacific oyster spermatozoa. In addition, spermatozoa may hydrolyze intracellular ATP content during the early part of the movement phase, stimulating mitochondrial activity. This stimulation seems to be involved in sustaining a high ATP level until the end of the motility phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass Customization (MC) is not a mature business strategy and hence it is not clear that a single or small group of operational models are dominating. Companies tend to approach MC from either a mass production or a customization origin and this in itself gives reason to believe that several operational models will be observable. This paper reviews actual and theoretical fulfilment systems that enterprises could apply when offering a pre-engineered catalogue of customizable products and options. Issues considered are: How product flows are structured in relation to processes, inventories and decoupling point(s); - Characteristics of the OF process that inhibit or facilitate fulfilment; - The logic of how products are allocated to customers; - Customer factors that influence OF process design and operation. Diversity in the order fulfilment structures is expected and is found in the literature. The review has identified four structural forms that have been used in a Catalogue MC context: - fulfilment from stock; - fulfilment from a single fixed decoupling point; - fulfilment from one of several fixed decoupling points; - fulfilment from several locations, with floating decoupling points. From the review it is apparent that producers are being imaginative in coping with the demands of high variety, high volume, customization and short lead times. These demands have encouraged the relationship between product, process and customer to be re-examined. Not only has this strengthened interest in commonality and postponement, but, as is reported in the paper, has led to the re-engineering of the order fulfilment process to create models with multiple fixed decoupling points and the floating decoupling point system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes to adjust the Notification Oriented Paradigm (NOP) so that it provides support to fuzzy concepts. NOP is inspired by elements of imperative and declarative paradigms, seeking to solve some of the drawbacks of both. By decomposing an application into a network of smaller computational entities that are executed only when necessary, NOP eliminates the need to perform unnecessary computations and helps to achieve better logical-causal uncoupling, facilitating code reuse and application distribution over multiple processors or machines. In addition, NOP allows to express the logical-causal knowledge at a high level of abstraction, through rules in IF-THEN format. Fuzzy systems, in turn, perform logical inferences on causal knowledge bases (IF-THEN rules) that can deal with problems involving uncertainty. Since PON uses IF-THEN rules in an alternative way, reducing redundant evaluations and providing better decoupling, this research has been carried out to identify, propose and evaluate the necessary changes to be made on NOP allowing to be used in the development of fuzzy systems. After that, two fully usable materializations were created: a C++ framework, and a complete programming language (LingPONFuzzy) that provide support to fuzzy inference systems. From there study cases have been created and several tests cases were conducted, in order to validate the proposed solution. The test results have shown a significant reduction in the number of rules evaluated in comparison to a fuzzy system developed using conventional tools (frameworks), which could represent an improvement in performance of the applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Providing high levels of product variety and product customization is challenging for many companies. This paper presents a new classification of production and order fulfillment approaches available to manufacturing companies that offer high variety and/or product customization. Six categories of approaches are identified and described. An important emerging approach - open pipeline planning – is highlighted for high variety manufacturing environments. It allows a customer order to be fulfilled from anywhere in the system, enabling greater responsiveness in Build-to-Forecast systems. The links between the open pipeline approach, decoupling concepts and postponement strategies are discussed and the relevance of the approach to the volume automotive sector is highlighted. Results from a simulation study are presented illustrating the potential benefits when products can be reconfigured in an open pipeline system. The application of open pipeline concepts to different manufacturing domains is discussed and the operating characteristics of most relevance are highlighted. In addition to the automotive, sectors such as machinery and instrumentation, computer servers, telecommunications and electronic equipment may benefit from an open pipeline planning approach. When properly designed these systems can significantly enhance order fulfillment performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims to understand how cells coordinate their motion during collective migration. As previously shown, the motion of individually migrating cells is governed by wave-like cell shape dynamics. The mechanisms that regulate these dynamic behaviors in response to extracellular environment remain largely unclear. I applied shape dynamics analysis to Dictyostelium cells migrating in pairs and in multicellular streams and found that wave-like membrane protrusions are highly coupled between touching cells. I further characterized cell motion by using principle component analysis (PCA) to decompose complex cell shape changes into a serial shape change modes, from which I found that streaming cells exhibit localized anterior protrusion, termed front narrowing, to facilitate cell-cell coupling. I next explored cytoskeleton-based mechanisms of cell-cell coupling by measuring the dynamics of actin polymerization. Actin polymerization waves observed in individual cells were significantly suppressed in multicellular streams. Streaming cells exclusively produced F-actin at cell-cell contact regions, especially at cell fronts. I demonstrated that such restricted actin polymerization is associated with cell-cell coupling, as reducing actin polymerization with Latrunculin A leads to the assembly of F-actin at the side of streams, the decrease of front narrowing, and the decoupling of protrusion waves. My studies also suggest that collective migration is guided by cell-surface interactions. I examined the aggregation of Dictyostelim cells under distinct conditions and found that both chemical compositions of surfaces and surface-adhesion defects in cells result in altered collective migration patterns. I also investigated the shape dynamics of cells suspended on PEG-coated surfaces, which showed that coupling of protrusion waves disappears on touching suspended cells. These observations indicate that collective migration requires a balance between cell-cell and cell-surface adhesions. I hypothesized such a balance is reached via the regulation of cytoskeleton. Indeed, I found cells actively regulate cytoskeleton to retain optimal cell-surface adhesions on varying surfaces, and cells lacking the link between actin and surfaces (talin A) could not retain the optimal adhesions. On the other hand, suspended cells exhibited enhanced actin filament assembly on the periphery of cell groups instead of in cell-cell contact regions, which facilitates their aggregation in a clumping fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A subfilter-scale (SFS) stress model is developed for large-eddy simulations (LES) and is tested on various benchmark problems in both wall-resolved and wall-modelled LES. The basic ingredients of the proposed model are the model length-scale, and the model parameter. The model length-scale is defined as a fraction of the integral scale of the flow, decoupled from the grid. The portion of the resolved scales (LES resolution) appears as a user-defined model parameter, an advantage that the user decides the LES resolution. The model parameter is determined based on a measure of LES resolution, the SFS activity. The user decides a value for the SFS activity (based on the affordable computational budget and expected accuracy), and the model parameter is calculated dynamically. Depending on how the SFS activity is enforced, two SFS models are proposed. In one approach the user assigns the global (volume averaged) contribution of SFS to the transport (global model), while in the second model (local model), SFS activity is decided locally (locally averaged). The models are tested on isotropic turbulence, channel flow, backward-facing step and separating boundary layer. In wall-resolved LES, both global and local models perform quite accurately. Due to their near-wall behaviour, they result in accurate prediction of the flow on coarse grids. The backward-facing step also highlights the advantage of decoupling the model length-scale from the mesh. Despite the sharply refined grid near the step, the proposed SFS models yield a smooth, while physically consistent filter-width distribution, which minimizes errors when grid discontinuity is present. Finally the model application is extended to wall-modelled LES and is tested on channel flow and separating boundary layer. Given the coarse resolution used in wall-modelled LES, near the wall most of the eddies become SFS and SFS activity is required to be locally increased. The results are in very good agreement with the data for the channel. Errors in the prediction of separation and reattachment are observed in the separated flow, that are somewhat improved with some modifications to the wall-layer model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the yN/\wurzel{Hz}range, i.e. in the xN/\wurzel{Hz}(xennonewton, 10^−27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998-2001 along the submarine Serreta ridge (SSR), ~4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presented Thesis describes the design of RF-energy harvesting systems with applications on different environments, from the biomedical side to the industrial one, tackling the common thread problem which is the design of complete energy autonomous tags each of them with its dedicated purpose. This Thesis gathers a work of three years in the field of energy harvesting system design, a combination of full-wave electromagnetic designs to optimize not only the antenna performance but also to fulfill the requirements given by each case study such as dimensions, insensitivity from the surrounding environment, flexibility and compliance with regulations. The research activity has been based on the development of highly-demanded ideas and real-case necessities which are in line with the environment in which modern IoT applications can really make a positive contribution. The Thesis is organized as follows: the first application, described in Chapter 2, regards the design and experimental validations of a rotation-insensitive WPT system for implantable devices. Chapter 3 presents the design of a wearable energy autonomous detector to identify the presence of ethanol on the body surface. Chapter 4 describes investigations in the use of Bessel Beam launchers for creating a highly-focused energy harvesting link for wearable applications. Reduced dimensions, high focusing and decoupling from the human body are the key points to be addressed during the full-wave design and nonlinear optimization of the receiver antenna. Finally, Chapter 5 presents an energy autonomous system exploiting LoRa (Long Range) nodes for tracking trailers in industrial plants. The novelty behind this design lies on the aim of obtaining a perfectly scalable system that exploits not only EH basic operating system but embeds a seamless solution for collecting a certain amount of power that varies with respect the received power level on the antenna, without the need of additional off-the-shelf components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oggigiorno il concetto di informazione è diventato cruciale in fisica, pertanto, siccome la migliore teoria che abbiamo per compiere predizioni riguardo l'universo è la meccanica quantistica, assume una particolare importanza lo sviluppo di una versione quantistica della teoria dell'informazione. Questa centralità è confermata dal fatto che i buchi neri hanno entropia. Per questo motivo, in questo lavoro sono presentati elementi di teoria dell'informazione quantistica e della comunicazione quantistica e alcuni sono illustrati riferendosi a modelli quantistici altamente idealizzati della meccanica di buco nero. In particolare, nel primo capitolo sono forniti tutti gli strumenti quanto-meccanici per la teoria dell'informazione e della comunicazione quantistica. Successivamente, viene affrontata la teoria dell'informazione quantistica e viene trovato il limite di Bekenstein alla quantità di informazione chiudibile entro una qualunque regione spaziale. Tale questione viene trattata utilizzando un modello quantistico idealizzato della meccanica di buco nero supportato dalla termodinamica. Nell'ultimo capitolo, viene esaminato il problema di trovare un tasso raggiungibile per la comunicazione quantistica facendo nuovamente uso di un modello quantistico idealizzato di un buco nero, al fine di illustrare elementi della teoria. Infine, un breve sommario della fisica dei buchi neri è fornito in appendice.