995 resultados para crash data
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Road agencies require comprehensive, relevan and quality data describing their road assets to support their investment decisions. An investment decision support system for raod maintenance and rehabilitation mainly comprise three important supporting elements namely: road asset data, decision support tools and criteria for decision-making. Probability-based methods have played a crucial role in helping decision makers understand the relationship among road related data, asset performance and uncertainties in estimating budgets/costs for road management investment. This paper presents applications of the probability-bsed method for road asset management.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
Speeding remains a significant contributing factor to road trauma internationally, despite increasingly sophisticated speed management strategies being adopted around the world. Increases in travel speed are associated with increases in crash risk and crash severity. As speed choice is a voluntary behaviour, driver perceptions are important to our understanding of speeding and, importantly, to designing effective behavioural countermeasures. The four studies conducted in this program of research represent a comprehensive approach to examining psychosocial influences on driving speeds in two countries that are at very different levels of road safety development: Australia and China. Akers’ social learning theory (SLT) was selected as the theoretical framework underpinning this research and guided the development of key research hypotheses. This theory was chosen because of its ability to encompass psychological, sociological, and criminological perspectives in understanding behaviour, each of which has relevance to speeding. A mixed-method design was used to explore the personal, social, and legal influences on speeding among car drivers in Queensland (Australia) and Beijing (China). Study 1 was a qualitative exploration, via focus group interviews, of speeding among 67 car drivers recruited from south east Queensland. Participants were assigned to groups based on their age and gender, and additionally, according to whether they self-identified as speeding excessively or rarely. This study aimed to elicit information about how drivers conceptualise speeding as well as the social and legal influences on driving speeds. The findings revealed a wide variety of reasons and circumstances that appear to be used as personal justifications for exceeding speed limits. Driver perceptions of speeding as personally and socially acceptable, as well as safe and necessary were common. Perceptions of an absence of danger associated with faster driving speeds were evident, particularly with respect to driving alone. An important distinction between the speed-based groups related to the attention given to the driving task. Rare speeders expressed strong beliefs about the need to be mindful of safety (self and others) while excessive speeders referred to the driving task as automatic, an absent-minded endeavour, and to speeding as a necessity in order to remain alert and reduce boredom. For many drivers in this study, compliance with speed limits was expressed as discretionary rather than mandatory. Social factors, such as peer and parental influence were widely discussed in Study 1 and perceptions of widespread community acceptance of speeding were noted. In some instances, the perception that ‘everybody speeds’ appeared to act as one rationale for the need to raise speed limits. Self-presentation, or wanting to project a positive image of self was noted, particularly with respect to concealing speeding infringements from others to protect one’s image as a trustworthy and safe driver. The influence of legal factors was also evident. Legal sanctions do not appear to influence all drivers to the same extent. For instance, fear of apprehension appeared to play a role in reducing speeding for many, although previous experiences of detection and legal sanctions seemed to have had limited influence on reducing speeding among some drivers. Disregard for sanctions (e.g., driving while suspended), fraudulent demerit point use, and other strategies to avoid detection and punishment were widely and openly discussed. In Study 2, 833 drivers were recruited from roadside service stations in metropolitan and regional locations in Queensland. A quantitative research strategy assessed the relative contribution of personal, social, and legal factors to recent and future self-reported speeding (i.e., frequency of speeding and intentions to speed in the future). Multivariate analyses examining a range of factors drawn from SLT revealed that factors including self-identity (i.e., identifying as someone who speeds), favourable definitions (attitudes) towards speeding, personal experiences of avoiding detection and punishment for speeding, and perceptions of family and friends as accepting of speeding were all significantly associated with greater self-reported speeding. Study 3 was an exploratory, qualitative investigation of psychosocial factors associated with speeding among 35 Chinese drivers who were recruited from the membership of a motoring organisation and a university in Beijing. Six focus groups were conducted to explore similar issues to those examined in Study 1. The findings of Study 3 revealed many similarities with respect to the themes that arose in Australia. For example, there were similarities regarding personal justifications for speeding, such as the perception that posted limits are unreasonably low, the belief that individual drivers are able to determine safe travel speeds according to personal comfort with driving fast, and the belief that drivers possess adequate skills to control a vehicle at high speed. Strategies to avoid detection and punishment were also noted, though they appeared more widespread in China and also appeared, in some cases, to involve the use of a third party, a topic that was not reported by Australian drivers. Additionally, higher perceived enforcement tolerance thresholds were discussed by Chinese participants. Overall, the findings indicated perceptions of a high degree of community acceptance of speeding and a perceived lack of risk associated with speeds that were well above posted speed limits. Study 4 extended the exploratory research phase in China with a quantitative investigation involving 299 car drivers recruited from car washes in Beijing. Results revealed a relatively inexperienced sample with less than 5 years driving experience, on average. One third of participants perceived that the certainty of penalties when apprehended was low and a similar proportion of Chinese participants reported having previously avoided legal penalties when apprehended for speeding. Approximately half of the sample reported that legal penalties for speeding were ‘minimally to not at all’ severe. Multivariate analyses revealed that past experiences of avoiding detection and punishment for speeding, as well as favourable attitudes towards speeding, and perceptions of strong community acceptance of speeding were most strongly associated with greater self-reported speeding in the Chinese sample. Overall, the results of this research make several important theoretical contributions to the road safety literature. Akers’ social learning theory was found to be robust across cultural contexts with respect to speeding; similar amounts of variance were explained in self-reported speeding in the quantitative studies conducted in Australia and China. Historically, SLT was devised as a theory of deviance and posits that deviance and conformity are learned in the same way, with the balance of influence stemming from the ways in which behaviour is rewarded and punished (Akers, 1998). This perspective suggests that those who speed and those who do not are influenced by the same mechanisms. The inclusion of drivers from both ends of the ‘speeding spectrum’ in Study 1 provided an opportunity to examine the wider utility of SLT across the full range of the behaviour. One may question the use of a theory of deviance to investigate speeding, a behaviour that could, arguably, be described as socially acceptable and prevalent. However, SLT seemed particularly relevant to investigating speeding because of its inclusion of association, imitation, and reinforcement variables which reflect the breadth of factors already found to be potentially influential on driving speeds. In addition, driving is a learned behaviour requiring observation, guidance, and practice. Thus, the reinforcement and imitation concepts are particularly relevant to this behaviour. Finally, current speed management practices are largely enforcement-based and rely on the principles of behavioural reinforcement captured within the reinforcement component of SLT. Thus, the application of SLT to a behaviour such as speeding offers promise in advancing our understanding of the factors that influence speeding, as well as extending our knowledge of the application of SLT. Moreover, SLT could act as a valuable theoretical framework with which to examine other illegal driving behaviours that may not necessarily be seen as deviant by the community (e.g., mobile phone use while driving). This research also made unique contributions to advancing our understanding of the key components and the overall structure of Akers’ social learning theory. The broader SLT literature is lacking in terms of a thorough structural understanding of the component parts of the theory. For instance, debate exists regarding the relevance of, and necessity for including broader social influences in the model as captured by differential association. In the current research, two alternative SLT models were specified and tested in order to better understand the nature and extent of the influence of differential association on behaviour. Importantly, the results indicated that differential association was able to make a unique contribution to explaining self-reported speeding, thereby negating the call to exclude it from the model. The results also demonstrated that imitation was a discrete theoretical concept that should also be retained in the model. The results suggest a need to further explore and specify mechanisms of social influence in the SLT model. In addition, a novel approach was used to operationalise SLT variables by including concepts drawn from contemporary social psychological and deterrence-based research to enhance and extend the way that SLT variables have traditionally been examined. Differential reinforcement was conceptualised according to behavioural reinforcement principles (i.e., positive and negative reinforcement and punishment) and incorporated concepts of affective beliefs, anticipated regret, and deterrence-related concepts. Although implicit in descriptions of SLT, little research has, to date, made use of the broad range of reinforcement principles to understand the factors that encourage or inhibit behaviour. This approach has particular significance to road user behaviours in general because of the deterrence-based nature of many road safety countermeasures. The concept of self-identity was also included in the model and was found to be consistent with the definitions component of SLT. A final theoretical contribution was the specification and testing of a full measurement model prior to model testing using structural equation modelling. This process is recommended in order to reduce measurement error by providing an examination of the psychometric properties of the data prior to full model testing. Despite calls for such work for a number of decades, the current work appears to be the only example of a full measurement model of SLT. There were also a number of important practical implications that emerged from this program of research. Firstly, perceptions regarding speed enforcement tolerance thresholds were highlighted as a salient influence on driving speeds in both countries. The issue of enforcement tolerance levels generated considerable discussion among drivers in both countries, with Australian drivers reporting lower perceived tolerance levels than Chinese drivers. It was clear that many drivers used the concept of an enforcement tolerance in determining their driving speed, primarily with the desire to drive faster than the posted speed limit, yet remaining within a speed range that would preclude apprehension by police. The quantitative results from Studies 2 and 4 added support to these qualitative findings. Together, the findings supported previous research and suggested that a travel speed may not be seen as illegal until that speed reaches a level over the prescribed enforcement tolerance threshold. In other words, the enforcement tolerance appears to act as a ‘de facto’ speed limit, replacing the posted limit in the minds of some drivers. The findings from the two studies conducted in China (Studies 2 and 4) further highlighted the link between perceived enforcement tolerances and a ‘de facto’ speed limit. Drivers openly discussed driving at speeds that were well above posted speed limits and some participants noted their preference for driving at speeds close to ‘50% above’ the posted limit. This preference appeared to be shaped by the perception that the same penalty would be imposed if apprehended, irrespective of what speed they travelling (at least up to 50% above the limit). Further research is required to determine whether the perceptions of Chinese drivers are mainly influenced by the Law of the People’s Republic of China or by operational practices. Together, the findings from both studies in China indicate that there may be scope to refine enforcement tolerance levels, as has happened in other jurisdictions internationally over time, in order to reduce speeding. Any attempts to do so would likely be assisted by the provision of information about the legitimacy and purpose of speed limits as well as risk factors associated with speeding because these issues were raised by Chinese participants in the qualitative research phase. Another important practical implication of this research for speed management in China is the way in which penalties are determined. Chinese drivers described perceptions of unfairness and a lack of transparency in the enforcement system because they were unsure of the penalty that they would receive if apprehended. Steps to enhance the perceived certainty and consistency of the system to promote a more equitable approach to detection and punishment would appear to be welcomed by the general driving public and would be more consistent with the intended theoretical (deterrence) basis that underpins the current speed enforcement approach. The use of mandatory, fixed penalties may assist in this regard. In many countries, speeding attracts penalties that are dependent on the severity of the offence. In China, there may be safety benefits gained from the introduction of a similar graduated scale of speeding penalties and fixed penalties might also help to address the issue of uncertainty about penalties and related perceptions of unfairness. Such advancements would be in keeping with the principles of best practice for speed management as identified by the World Health Organisation. Another practical implication relating to legal penalties, and applicable to both cultural contexts, relates to the issues of detection and punishment avoidance. These two concepts appeared to strongly influence speeding in the current samples. In Australia, detection avoidance strategies reported by participants generally involved activities that are not illegal (e.g., site learning and remaining watchful for police vehicles). The results from China were similar, although a greater range of strategies were reported. The most common strategy reported in both countries for avoiding detection when speeding was site learning, or familiarisation with speed camera locations. However, a range of illegal practices were also described by Chinese drivers (e.g., tampering with or removing vehicle registration plates so as to render the vehicle unidentifiable on camera and use of in-vehicle radar detectors). With regard to avoiding punishment when apprehended, a range of strategies were reported by drivers from both countries, although a greater range of strategies were reported by Chinese drivers. As the results of the current research indicated that detection avoidance was strongly associated with greater self-reported speeding in both samples, efforts to reduce avoidance opportunities are strongly recommended. The practice of randomly scheduling speed camera locations, as is current practice in Queensland, offers one way to minimise site learning. The findings of this research indicated that this practice should continue. However, they also indicated that additional strategies are needed to reduce opportunities to evade detection. The use of point-to-point speed detection (also known as sectio
Resumo:
This dissertation develops the model of a prototype system for the digital lodgement of spatial data sets with statutory bodies responsible for the registration and approval of land related actions under the Torrens Title system. Spatial data pertain to the location of geographical entities together with their spatial dimensions and are classified as point, line, area or surface. This dissertation deals with a sub-set of spatial data, land boundary data that result from the activities performed by surveying and mapping organisations for the development of land parcels. The prototype system has been developed, utilising an event-driven paradigm for the user-interface, to exploit the potential of digital spatial data being generated from the utilisation of electronic techniques. The system provides for the creation of a digital model of the cadastral network and dependent data sets for an area of interest from hard copy records. This initial model is calibrated on registered control and updated by field survey to produce an amended model. The field-calibrated model then is electronically validated to ensure it complies with standards of format and content. The prototype system was designed specifically to create a database of land boundary data for subsequent retrieval by land professionals for surveying, mapping and related activities. Data extracted from this database are utilised for subsequent field survey operations without the need to create an initial digital model of an area of interest. Statistical reporting of differences resulting when subsequent initial and calibrated models are compared, replaces the traditional checking operations of spatial data performed by a land registry office. Digital lodgement of survey data is fundamental to the creation of the database of accurate land boundary data. This creation of the database is fundamental also to the efficient integration of accurate spatial data about land being generated by modem technology such as global positioning systems, and remote sensing and imaging, with land boundary information and other information held in Government databases. The prototype system developed provides for the delivery of accurate, digital land boundary data for the land registration process to ensure the continued maintenance of the integrity of the cadastre. Such data should meet also the more general and encompassing requirements of, and prove to be of tangible, longer term benefit to the developing, electronic land information industry.