505 resultados para copepod


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ingestion on ciliates and phytoplankton dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod ingestion was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 20 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, and Temoraa stylifera according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). The egg production dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod egg production was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Clausocalanus furcatus, Temora stylifera. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mgC/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information on the functional traits was gathered for the most commonly-sampled copepod species of the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length (mm), trophic group (Omnivore/Carnivore/Herbivore/Detritivore), feeding type (Cruise-feeding/Filter-feeding/Ambush-feeding), spawning strategy (Sac-spawner/Free-spawner), diel vertical migration (Non-migrant/Weak-migrant/Strong-migrant) and vertical habitat (prefered depth layer). Using cluster analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The copepod Ingestion on ciliates, phytoplankton and the copepod production dataset is based on samples taken during April 2008 in Dardanelles Straits, Marmara Sea and Bosporus Straits at the third priority stations. These experiments were set up according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 50 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Centropages typicus and Acartia clausi according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs/female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Centropages typicus and Acartia clausi. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mg/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.