973 resultados para concentration distribution
Resumo:
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September-October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5x10**13, 1.3x10**11 and 1.5x10**11 cells/m**2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g/m**2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2x10**13, 6.2x10**11 and 5.1x10**11 cells/m**2, respectively. The integrated biomass was 1.9 g C/m**2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg/m**2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg/m**2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.
Resumo:
Data on concentrations and distribution of particulate matter in the Caspian Sea obtained during surveys in 1981-1983 with use of modified filtering units have shown that over the major part of the sea concentration of particulate matter does dot exceed 1-2 mg/l. Only in the northern Caspian and in coastal regions concentrations correspond to values measured earlier. Total amount of particulate matter in the Caspian Sea is about of 90 million ton, 19.6% in the Northern Caspian, 28.1% in the Middle Caspian, and 52.3% in the Southern Caspian. Contents of carbon in particulate matter of the Central Caspian reach 30-40%, and over a significant part of the sea - 20%. A correlation has been found between areas of increased carbon contents in particulate matter and in bottom sediments. An important role of biofiltration in enrichment of particulates in organic matter has been noted. From data on carbon contents and an estimate of particulate matter input biogenic portion in particulate matter exceeds 50% for the whole sea.
Resumo:
Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ~20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.
Resumo:
During the International ICES Expedition "Overflow '73" a total of 174 samples from 18 stations were collected by R. V. "Meteor" in the waters of the Iceland-Faroe Ridge area. They were filtered on board ship (through 0.4 mym "Nuclepore" filters), then stored in 500 cm**3 quartz bottles (at -20 °C) and analyzed in air-filtered laboratories on land for zinc and cadmium by means of the differential pulse anodic stripping voltammetry technique and copper and iron by flameless atomic absorption spectrometry. The overall averages of 1.9 myg Zn l**-1, 0.07 myg Cd l**-1, 0.5 myg Cu l**-1 and 0.9 myg Fe l**-1 are in good agreement with recent "baseline" studies of open-ocean waters. The mixture of low salinity water masses from the North Iceland Shelf/Arctic Intermediate Waters seem to maintain distinctly lower concentration of Cd, Cu and Fe than the waters from the North Atlantic and the Norwegian Sea where quite similar mean values are found. There is only little evidence for the assumption that overflow events on the ridge are influencing the concentrations of dissolved metals in the near-bottom layers.