317 resultados para coils
Resumo:
Abdominal aortic aneurysm is the pathological dilation of the abdominal tract of the aorta and, if left untreated, could undergo rupture with a mortality rate of up to 90%. EVAR is the most common method for AAA treatment consisting in the internal coverage of the aorta with a metallic stent to isolate the aneurysmatic segment from the systemic circulation. Although EVAR technical success rate is high, reinterventions are common. Among the causes of reinterventions typeII endoleaks are the most frequent and consist in retrograde blood flow into the aneurysmal sac from collateral aortic branches. Continued perfusion of the aneurysm sac may lead to aneurysm rupture, therefore AAA sac embolization is performed using metallic coils. However, the presence of artifacts caused by the presence of metallic coils is a limitation because they are radiopaque and can hamper the endoleak during imaging follow-up. This study is aimed at developing a biocompatible hydrogel that could be injected into the aneurysmal sac and may allow a selective intraprocedural sac embolization to reduce post procedural typeII endoleak and eventual AAA rupture. P(BT75BSI25) was synthesized by polycondensation and its biocompatibility tested to assess whether the polymers had no toxic effects. HUVEC cell line was used to mimic the environment in which the polymer would be in contact with, PBS was used as a positive control and MTT assay was performed to evaluate cellular viability after being in contact with the hydrogel. MTT assay showed no significant difference between PBS and P(BT75BSI25), thus the polymer is biocompatible, as confirmed by the analysis of apoptosis by flow cytometry. An aromatic copolymer was obtained via polycondensation and was found to be biocompatible in contact with endothelial cells. This suggests that the hydrogel could be potentially used in the clinical setting for the treatment of type II endoleak after EVAR.
Resumo:
Il lavoro svolto nella seguente Tesi ha avuto come obiettivo principale quello di modificare il precedente modello TRNSYS dell’impianto innovativo solare/biomassa studiato nell’ambito del progetto Hybrid-BioVGE, impianto che utilizza un gruppo chiller VGE con eiettore a geometria variabile, aggiungendo il circuito per la produzione di ACS, composto da un serbatoio di accumulo un campo di collettori solari dedicato ed una pompa di circolazione, modificando la circuitazione idraulica complessiva, modellando la configurazione finale. Sono state modificate e migliorate anche le logiche di controllo dei vari componenti dell’impianto, in particolare della caldaia a biomassa, del connettore tra accumulo caldo da un lato e circuito di riscaldamento ed accumulo per la produzione di ACS dall’altro lato, del gruppo chiller VGE e dell’accumulo di energia frigorifera con PCM. In ultima istanza, è stata implementata per la stagione estiva un’ulteriore logica di controllo che favorisce il funzionamento del gruppo chiller VGE quando è disponibile un alto contributo di energia solare ed in presenza di una temperatura ambiente in condizioni favorevoli. Attraverso il software TRNSYS 18 sono stati riprodotti in maniera fedele e accurata l'edificio, l'impianto innovativo ad esso associato e sono state svolte delle simulazioni in periodi temporali dell'anno precisi. Tali simulazioni hanno mostrato: un miglioramento nell’efficienza dell’impianto durante la stagione di riscaldamento per alimentare i pannelli radianti al servizio dell’edificio e la produzione di ACS, con valori di Solar Fraction pari al 70% e quota di energia rinnovabile del 90%; prestazioni migliori durante la stagione di raffrescamento con incremento dell'energia termica emessa dai fan-coils del 3%, della Solar Fraction pari al 50% e Seasonal Performance Factor di sistema migliori. Annualmente si è vista una quota di energia rinnovabile molto elevata (84.2%).