704 resultados para cloud computing, hypervisor, virtualizzazione, live migration, infrastructure as a service
Resumo:
Durch den großen Erfolg des Cloud Computing und der hohen Geschwindigkeit, mit der Cloud-Innovationen seither Einzug in die Praxis finden, eröffnen sich für die Industrie neue Chancen im Wettbewerb. Von besonderer Bedeutung sind die Möglichkeiten, Cloud-gestützte Geschäftsprozesse dynamisch, als direkte Reaktion auf einen Kundenauftrag, anzupassen und auszuführen. Dies gilt insbesondere auch für kooperative und unternehmensübergreifende Anwendungen, welche aus mehreren IT-Diensten verschiedener Partner bestehen. Gegenstand dieses Artikels ist die Vorstellung eines Konzeptes und einer Architektur für eine zentrale Cloud-Plattform zur Konfiguration, Ausführung und Überwachung von kollaborativen Logistik-Prozessen. Auf dieser Plattform können Geschäftsprozesse modelliert und in ihren Privacy-Eigenschaften parametrisiert werden. Die einzelnen Prozesselemente werden dabei mit IT-Diensten verknüpft, die beispielsweise auf externen Cloud-Plattformen ausgeführt werden. Ein Schwerpunkt der Veröffentlichung liegt in der Betrachtung der Erstellung, Umsetzung und Überwachung von Privacy-Anforderungen.
Resumo:
Il lavoro sviluppato deriva dalla creazione, in sede di tirocinio, di un piccolo database, creato a partire dalla ricerca dei dati fino alla scelta di informazioni di rilievo e alla loro conseguente archiviazione. L’obiettivo dell’elaborato è rappresentato dalla volontà di ampliare quella conoscenza basilare posseduta sul mondo dell’informazione dal punto di vista gestionale. Infatti, considerando lo scenario odierno, si può affermare che lo studio del cliente attraverso delle informazioni rilevanti, di vario tipo, è una delle conoscenze fondamentali nel mondo dell’ingegneria gestionale. Il metodo di studio utilizzato è basato sulla comprensione delle diverse tipologie di dati presenti nel mondo aziendale e, di conseguenza, al loro legame con il mondo del web e soprattutto con i metodi di archiviazione più moderni e più utilizzati oggi sia dalle aziende, che non dai privati stessi; le piattaforme cloud. L’elaborato si suddivide in tre argomenti differenti ma strettamente collegati tra loro; la prima parte tratta di come l’informazione più basilare vada raccolta ed analizzata, la sezione centrale è legata al tema chiave dell’internet come mezzo di archiviazione e non più solo come piattaforma di ricerca del dato, mentre nel capitolo finale viene chiarito il concetto di cloud computing, comodo veloce ed efficiente, considerato da qualche anno il punto d’incontro fra i primi due argomenti. Nello specifico si andranno a presentare alcuni di applicazione reale del cloud da parte di aziende come Amazon, Google e Facebook, multinazionali che ad oggi sono riuscite a fare dell’archiviazione e della manipolazione dei dati, a scopi industriali, una delle loro fonti di guadagno. Il risultato è rappresentato da una panoramica sul funzionamento e sulle tecniche di utilizzo dell’informazione, partendo dal dato più irrilevante fino ad arrivare ai database condivisi utilizzati, se non addirittura controllati, dalle più rinomate aziende nazionali ed internazionali.
Resumo:
This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
The air-sea flux of greenhouse gases (e.g. carbon dioxide, CO2) is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher resolution calculations of these gas fluxes are required if we are to fully understand and predict our future climate. Satellite Earth observation is able to provide large spatial scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud-computing can provide a solution. Here we describe an open source air-sea CO2 flux processing toolbox called the ‘FluxEngine’, designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air-sea CO2 flux data from model, in situ and Earth observation data, and its air-sea gas flux calculation is user configurable. Its current installation on the Nephalae cloud allows users to easily exploit more than 8 terabytes of climate-quality Earth observation data for the derivation of gas fluxes. The resultant NetCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, the verification of the air-sea CO2 flux calculations, demonstrates the use of the tools for studying global and shelf-sea air-sea fluxes and describes future developments.
Resumo:
En la actualidad, el uso del Cloud Computing se está incrementando y existen muchos proveedores que ofrecen servicios que hacen uso de esta tecnología. Uno de ellos es Amazon Web Services, que a través de su servicio Amazon EC2, nos ofrece diferentes tipos de instancias que podemos utilizar según nuestras necesidades. El modelo de negocio de AWS se basa en el pago por uso, es decir, solo realizamos el pago por el tiempo que se utilicen las instancias. En este trabajo se implementa en Amazon EC2, una aplicación cuyo objetivo es extraer de diferentes fuentes de información, los datos de las ventas realizadas por las editoriales y librerías de España. Estos datos son procesados, cargados en una base de datos y con ellos se generan reportes estadísticos, que ayudarán a los clientes a tomar mejores decisiones. Debido a que la aplicación procesa una gran cantidad de datos, se propone el desarrollo y validación de un modelo, que nos permita obtener una ejecución óptima en Amazon EC2. En este modelo se tienen en cuenta el tiempo de ejecución, el coste por uso y una métrica de coste/rendimiento. Adicionalmente, se utilizará la tecnología de contenedores Docker para llevar a cabo un caso específico del despliegue de la aplicación.
Resumo:
This talk, which is based on our newest findings and experiences from research and industrial projects, addresses one of the most relevant challenges for a decade to come: How to integrate the Internet of Things with software, people, and processes, considering modern Cloud Computing and Elasticity principles. Elasticity is seen as one of the main characteristics of Cloud Computing today. Is elasticity simply scalability on steroids? This talk addresses the main principles of elasticity, presents a fresh look at this problem, and examines how to integrate people, software services, and things into one composite system, which can be modeled, programmed, and deployed on a large scale in an elastic way. This novel paradigm has major consequences on how we view, build, design, and deploy ultra-large scale distributed systems.
Resumo:
Part 12: Collaboration Platforms
Resumo:
Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.
Resumo:
This paper is a detailed case narrative on how a Faculty of a leading Australian University conducted a rigorous process improvement project, applying fundamental Business Process Management (BPM) concepts. The key goal was to increase the efficiency of the faculty’s service desk. The decrease of available funds due to reducing student numbers and the ever increasing costs associated with service desk prompted this project. The outcomes of the project presented a set of recommendations which leads to organizational innovation having information technology as an enabler for change. The target audience includes general BPM practitioners or academics who are interested in BPM related case studies, and specific organisations who might be interested in conducting BPM within their service desk processes.
Resumo:
As network capacity has increased over the past decade, individuals and organisations have found it increasingly appealing to make use of remote services in the form of service-oriented architectures and cloud computing services. Data processed by remote services, however, is no longer under the direct control of the individual or organisation that provided the data, leaving data owners at risk of data theft or misuse. This paper describes a model by which data owners can control the distribution and use of their data throughout a dynamic coalition of service providers using digital rights management technology. Our model allows a data owner to establish the trustworthiness of every member of a coalition employed to process data, and to communicate a machine-enforceable usage policy to every such member.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.