987 resultados para chromatographic peaks
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Plinia edulis, an arboreous species popularly known as ""cambuca"", is native to the Brazilian Atlantic Rain Forest. Despite its traditional uses, no reports are available on the safety of this utilization or on the relationship between the antiulcer activity of its extract and its phytochemical compounds. This paper reports on the investigation of the acute toxicity and gastroprotective effect of the aqueous ethanol extract of leaves of Plinia edulis on HCl/ethanol-induced ulcers. In order to correlate the secondary metabolites and the efficacy of the crude drug in traditional medicine, the extract was submitted to chromatographic fractionation after solvent partition. The extract did not show acute toxicity in mice treated with 5 g/kg p.o.. but exhibited significant antiulcer activity in rats at doses of 100, 200, and 400 mg/kg p.o., more active than the reference drug lansoprazole. The ethyl acetate fraction yielded P-amyrin, oleanolic acid, ursolic acid, and maslinic acid, which were identified based on spectrometric analyses. Since antiulcerogenic activity is not restricted to one class of compounds in plants, the triterpenoids isolated in the extract can be associated with the observed effect. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study, a simple, rapid and sensitive HPLC method with UV detection is described for determination of metformin in plasma samples from bioequivalence assays. Sample preparation was accomplished through protein precipitation with acetonitrile and chromatographic separation was performed on a reversed-phase phenyl column at 40 degrees C. Mobile phase consisted of a mixture of phosphate buffer and acetonitrile at flow rate of 1.0 ml/min. Wavelength was set at 236 nm. The method was applied to a bioequivalence study of two drug products containing metformin, and allowed determination of metformin at low concentrations with a higher throughput than previously described methods. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The bioequivalence of two different tablet formulations of tirtidazole (CAS 19387-91-8) was determined in healthy volunteers after a single dose in a randomized crossover study, with a 1-week washout period between the doses. Reference and test products were administered to 24 volunteers with 240 mL water after overnight fasting. Plasma concentrations of tinidazole were monitored by a high-performance liquid chromatographic method (HPLC) over a period of 72 h after the administration. The pharmacokinetic parameters AUC(0-t), AUC(0-infinity), C(max), T(max), T((1/2)el) and beta were determined from plasma concentration time profile of both formulations and found to be in good agreement with previously reported values. The calculated pharmacokinetic parameters were compared statistically to evaluate bioequivalence between the two brands. The analysis of variance (ANOVA) did not show any significant difference between the two formulations and 90% confidence intervals for the ratio of C(max) (93.9 - 102.6%), AUC(0-t), (94.9-101.1%) and AUC(0-infinity) (94.6-100.8%) values for the test and reference products were within the 80 - 125% interval, satisfying bioequivalence criteria of the European Committee for Proprietary Medicinal Products and the US Food and Drug Administration Guidelines. These results indicate that the test and the reference products of tinidazole are bioequivalent and, thus, may be prescribed interchangeably.
Resumo:
Pancuronium bromide is used with general anesthesia in surgery for muscle relaxation and as an aid to intubation. A high performance liquid chromatographic method was fully validated for the quantitative determination of pancuronium bromide in pharmaceutical injectable solutions. The analytical method was performed on an amino column (Luna 150mm4.6mm, 5m). The mobile phase was composed of acetonitrile:water containing 50mmol L-1 of 1-octane sulfonic acid sodium salt (20:80v/v) with a flow rate of 1.0mL min-1 and ultraviolet (UV) detection at 210nm. The proposed analytical method was compared with that described in the British Pharmacopoeia.
Resumo:
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) < 1.00), and LPS removal into the micelle-rich phase (%REM(LPS) > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1644-1653, 2010
Resumo:
In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether-dichloromethane, 80:20, v/v) and analyzed by HPLC-ESI-MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH(4)OH on a Gemini Phenomenex C(8) 5 mu m column (50 x 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05-10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra-batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter-batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine (R), Schering-Plough). The study was conducted using an open, randomized, two-period crossover design with a 2 week washout interval. Since the 90% confidence interval for C(max) and AUC ratios were all within the 80-125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
High-performance liquid-chromatographic (HPLC) methods were validated for determination of pravastatin sodium (PS), fluvastatin sodium (FVS), atorvastatin calcium (ATC), and rosuvastatin calcium (RC) in pharmaceuticals. Two stability-indicating HPLC methods were developed with a small change (10%) in the composition of the organic modifier in the mobile phase. The HPLC method for each statin was validated using isocratic elution. An RP-18 column was used with mobile phases consisting of methanol-water (60:40, v/v, for PS and RC and 70:30, v/v, for FVS and ATC). The pH of each mobile phase was adjusted to 3.0 with orthophosphoric acid, and the flow rate was 1.0mL/min. Calibration plots showed correlation coefficients (r)0.999, which were calculated by the least square method. The detection limit (DL) and quantitation limit (QL) were 1.22 and 3.08 mu g/mL for PS, 2.02 and 6.12 mu g/mL for FVS, 0.44 and 1.34 mu g/mL for ATC, and 1.55 and 4.70 mu g/mL for RC. Intraday and interday relative standard deviations (RSDs) were 2.0%. The methods were applied successfully for quantitative determination of statins in pharmaceuticals.
Resumo:
Leaf fractions of Wilbrandia ebracteata were investigated for anti-ulcerogenic effects in ethanol and indomethacin-induced gastric ulcer assays in mice. Protective anti-ulcer effects were detected only in the ethanol-induced ulcer assay effects after pre-treatment with MeOH extract, MeOH chlorophyll-free, chlorophyll residue, HEX, DCM, aqueous MeOH fraction, ethyl acetate (EtOAc) and aqueous fractions. A potent anti-ulcerogenic effect was determined after pre-treatment of animals with EtOAc fraction, which was fractionated for isolation of active constituents. Seven flavonoids, 3`,4`,5,6,7,8-hexahydroxyflavonol, orientin, isoorientin, vitexin, isovitexin, luteolin, 6-methoxi-luteolin were isolated from the leaves of W. ebracteata (Cucurbitaceae) by chromatographic methods and identified by their spectral data. The data suggest that flavonoids are active anti-ulcerogenic compounds from leaves of W. ebracteata. The ability of scavenging free radicals was evaluated by DPPH reduction assay by TLC of flavonoids isolated.
Resumo:
Two different cefadroxil (CAS 50370-12-2) formulations were evaluated for their relative bioavailability in 24 healthy volunteers who received a single 500 mg oral dose of each preparation. An open, randomized clinical trial designed as a two-period crossover study with a 7-day washout period between doses was employed. Plasma samples for assessments of their cefadroxil concentration by HPLC-UV were obtained over 8 h after administration. Values of 48.94 +/- 10.18 mu g . h/ml for test, and 48.51 +/- 9.02 mu g . h/ml for the reference preparation AUC(0-t) demonstrate a nearly identical extend of drug absorption. Maximum plasma concentration C-max of 16.04 +/- 4.94 mu g/ml and 16.01 +/- 4.02 mu g/ml achieved for the test and reference preparations did not differ significantly. The parametric 90% confidence intervals (CI) of the mean of the difference (test-reference) between log-transformed values of the two formulations were 96.80% to 104.51% and 92.01% to 107.00% for AUC(0-t) and C-max, respectively. Since for both AUC(0-t) or C-max the 90% CI values are within the interval proposed by the Food and Drug Administration, the test product is bioequivalent to the reference product for both the rate and extent of absorption after single dose administration.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial aceti acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5 - 500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.