652 resultados para chirped fiber grating
Resumo:
A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.
Resumo:
Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.
Resumo:
We have implemented a dynamic strain sensor using a Polymer Optical Fiber Bragg Grating (POFBG). In this paper, we have investigated an approach for making such systems cheaper through the use of easy to handle multimode fiber. A Vertical-Cavity Surface-Emitting Laser is used to decrease the cost of the interrogation system and a photodetector converts the reflected light into an electrical signal.
Resumo:
We report that the main photosensitive mechanism of poly(methyl methacrylate)-based optical fiber Bragg grating (POFBG) under ultraviolet laser micromachining is a complex process of both photodegradation and negative thermo-optic effect. We found experimentally the unique characteristics of Bragg resonance splitting and reunion during the laser micromachining process providing the evidence of photodegradation, while the mean refractive index change of POFBG was measured to be negative confirming further photodegradation of polymer fiber. The thermal-induced refractive index change of POFBG was also observed by recording the Bragg wavelength shift. Furthermore, the dynamic thermal response of the micromachined-POFBG was demonstrated under constant humidity, showing a linear and negative response of around -47.1 pm/°C.
Resumo:
We inscribe FBGs in all cores of four core fiber simultaneously and investigate their thermal, strain and bending (both direction and magnitude) responses. The influence of fiber core distance on bending sensitivity is also discussed. © 2015 OSA.
Resumo:
Two-channel fiber Bragg grating (TC-FBG) consisting of two localized sub-gratings parallel in the fiber core is fabricated by femtosecond laser. Utilizing the fabricated TC-FBG, stable and switchable dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. © 2015 OSA.
Resumo:
Water contamination can cause serious problems that compromise in transformer's safe operation and reduce its lifetime. Online monitoring of moisture concentration in transformer oil would permit the control of moisture buildup. This letter presents a direct optical measurement of moisture concentration in transformer oil using a poly(methyl methacrylate) (PMMA)-based optical fiber Bragg grating (POFBG). The refractive index and volume of PMMA-based optical fiber vary with the moisture in the surrounding transformer oil, changing the reflecting wavelength of the grating. A sensitivity of POFBG wavelength change to moisture content of 29 pm/ppm is demonstrated in this letter, indicating detectable water content better than 0.05 ppm.
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.
Resumo:
A novel approach for simultaneous measurement of static/dynamic strain and temperature with a pair of matched fiber Bragg grating(FBG)s is proposed. When a diode laser locked to the mid reflection frequency of reference FBG is used to illuminate the sensor FBG, reflected intensity changes with strain on sensor FBG. Reference FBG responds with temperature on sensor FBG and is immune to strain, hence, wavelength of the diode laser acts as a signature for temperature measurement. Theoretical sensitivity limit for static strain and temperature are 1.2n epsilon / root Hz and 0.0011 degrees C respectively. Proposed sensor shows a great potential in high sensitive strain measurements with a simplified experimental setup.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
We report here an experimental investigation for establishing and quantifying a link between the growth and decay characteristics of fiber Bragg gratings. One of the key aspects of our work is the determination of the defect energy distribution from the grating characteristics measured during their fabrication. We observe a strong correlation between the growth-based defect energy distribution and that obtained through accelerated aging experiments, paving the way for predicting the decay characteristics of fiber Bragg gratings from their growth data. Such a prediction is significant in simplifying the postfabrication steps required to enhance the thermal stability of fiber Bragg gratings. (c) 2011 Optical Society of America