952 resultados para carbon paste electrodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing heat produced by computer processors is an important issue today, especially when the size of processors is decreasing rapidly while the number of transistors in the processor is increasing rapidly. This poster describes a preliminary study of the process of adding carbon nanotubes (CNTs) to a standard silicon paste covering a CPU. Measurements were made in two rounds of tests to compare the rate of cool-down with and without CNTs present. The silicon paste acts as an interface between the CPU and the heat sink, increasing the heat transfer rate away from the CPU. To the silicon paste was added 0.05% by weight of CNTs. These were not aligned. A series of K-type thermocouples was used to measure the temperature as a function of time in the vicinity of the CPU, following its shut-off. An Omega data acquisition system was attached to the thermocouples. The CPU temperature was not measured directly because attachment of a thermocouple would have prevented its automatic shut-off A thermocouple in the paste containing the CNTs actually reached a higher temperature than the standard paste, an effect easily explained. But the rate of cooling with the CNTs was about 4.55% better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV-Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

12 V / kilo-Farad (kF) range substrate-integrated lead-carbon hybrid ultracapacitors (HUCs) wherein the conventional positive plates of lead-acid batteries are replaced with substrate-integrated PbO2 positive plates and the negative plates are replaced with carbon-coated graphitic electrodes, providing totally non-faradaic and corrosion-free electrodes, are developed and performance tested. Constant-current discharge data at varying load-currents, constant-power discharge data at varying power values, and the capacitance data at different temperature for a 12 V / kF range substrate-integrated lead-carbon HUC are described along with its resistance, leakage current, self-discharge and cycle-life characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of carbon nanomaterials usually calls for expensive vacuum systems to generate plasmas and yields are disappointingly low. Here we describe a simple method for producing high-quality spherical carbon nano-'onions' in large quantities without the use of vacuum equipment. The nanoparticles, which have C60 cores surrounded by onion-like nested particles, are generated by an arc discharge between two graphite electrodes submerged in water. This technique is economical and environmentally benign, and produces uncontaminated nanoparticles which may be useful in many applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the nanofabrication study of self-aligned electrodes on suspended multiwalled carbon nanotube structures. When metal is deposited on a suspended multiwalled carbon nanotube structure, the nanotube acts as an evaporation mask, resulting in the formation of discontinuous electrodes. The metal deposits on the nanotubes are removed with lift-off. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gapped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly-methylmethacrylate suspended dispersion was used to fabricate multiwalled carbon nanotube (MWCNT) bridges. Using this technique, nanotubes could be suspended between metal electrodes without any chemical etching of the substrate. The electrical measurement on suspended MWCNT bridges shows that the room temperature resistance ranges from under a kω to a few Mω.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the electrical characteristics of plasma enhanced chemical vapour deposition (PECVD)-grown, multi-walled carbon nanotube (MWCNT) devices made by a new fabrication method, PMMA suspended dispersion. This method makes it possible to suspend nanotubes between metal electrodes and to remove unwanted nanotubes from the substrate. The measurements show that the MWCNTs are metallic and able to maintain a current density ∼2×106 A/cm2 for more than 15 days with a maximum current density of ∼1.8×107 A/cm2. This high current density and reliability will make PECVD-grown MWCNTs applicable to field emission cathodes. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present electro-optic characteristics of a transparent nanophotonic device fabricated on quartz substrate based on multiwall carbon nanotubes and nematic liquid crystals (LCs). The nanotube electrodes spawn a Gaussian electric field to three dimensionally address the LC molecules. The electro-optic characteristics of the device were investigated to optimize the device performance and it was found that lower driving voltages were suitable for microlens array and phase modulation applications, while higher driving voltages with a holding voltage can be used for display-related applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.