851 resultados para business process deduction
Resumo:
This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.
Resumo:
Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization approaches. This paper analyses process comparison from a design perspective, providing some practical visualization techniques as anal- ysis solutions (/to support process analysis). The design of the visual comparison has been tackled through three different points of view: the general model, the projected model and the side-by-side comparison in order to support the needs of business analysts. A case study is presented showing the application of process mining and visualization techniques to patient treatment across two Australian hospitals.
Resumo:
Existing techniques for automated discovery of process models from event logs gen- erally produce flat process models. Thus, they fail to exploit the notion of subprocess as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of hierarchical BPMN models con- taining interrupting and non-interrupting boundary events and activity markers. The technique employs functional and inclusion dependency discovery techniques in order to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the projected logs associated to each node in the hierarchy, parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. By employing approximate dependency discovery tech- niques, it is possible to filter out noise in the event log arising for example from data entry errors or missing events. A validation with one synthetic and two real-life logs shows that process models derived by the proposed technique are more accurate and less complex than those derived with flat process discovery techniques. Meanwhile, a validation on a family of synthetically generated logs shows that the technique is resilient to varying levels of noise.
Resumo:
XACML has become the defacto standard for enterprise- wide, policy-based access control. It is a structured, extensible language that can express and enforce complex access control policies. There have been several efforts to extend XACML to support specific authorisation models, such as the OASIS RBAC profile to support Role Based Access Control. A number of proposals for authorisation models that support business processes and workflow systems have also appeared in the literature. However, there is no published work describing an extension to allow XACML to be used as a policy language with these models. This paper analyses the specific requirements of a policy language to express and enforce business process authorisation policies. It then introduces BP-XACML, a new profile that extends the RBAC profile for XACML so it can support business process authorisation policies. In particular, BP-XACML supports the notion of tasks, and constraints at the level of a task instance, which are important requirements in enforcing business process authorisation policies.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.
Resumo:
Web service and business process technologies are widely adopted to facilitate business automation and collaboration. Given the complexity of business processes, it is a sought-after feature to show a business process with different views to cater for the diverse interests, authority levels, etc., of different users. Aiming to implement such flexible process views in the Web service environment, this paper presents a novel framework named FlexView to support view abstraction and concretisation of WS-BPEL processes. In the FlexView framework, a rigorous view model is proposed to specify the dependency and correlation between structural components of process views with emphasis on the characteristics of WS-BPEL, and a set of rules are defined to guarantee the structural consistency between process views during transformations. A set of algorithms are developed to shift the abstraction and concretisation operations to the operational level. A prototype is also implemented for the proof-of-concept purpose. © 2010 Springer Science+Business Media, LLC.
Resumo:
This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
Process view technology is catching more attentions in modern business process management, as it enables the customisation of business process representation. This capability helps improve the privacy protection, authority control, flexible display, etc., in business process modelling. One of approaches to generate process views is to allow users to construct an aggregate on their underlying processes. However, most aggregation approaches stick to a strong assumption that business processes are always well-structured, which is over strict to BPMN. Aiming to build process views for non-well-structured BPMN processes, this paper investigates the characteristics of BPMN structures, tasks, events, gateways, etc., and proposes a formal process view aggregation approach to facilitate BPMN process view creation. A set of consistency rules and construction rules are defined to regulate the aggregation and guarantee the order preservation, structural and behaviour correctness and a novel aggregation technique, called EP-Fragment, is developed to tackle non-well-structured BPMN processes.