993 resultados para burn decision scenarios
Resumo:
Today recovering urban waste requires effective management services, which usually imply sophisticated monitoring and analysis mechanisms. This is essential for the smooth running of the entire recycling process as well as for planning and control urban waste recovering. In this paper we present a business intelligence system especially designed and im- plemented to support regular decision-making tasks on urban waste management processes. The system provides a set of domain-oriented analytical tools for studying and characterizing poten- tial scenarios of collection processes of urban waste, as well as for supporting waste manage- ment in urban areas, allowing for the organization and optimization of collection services. In or- der to clarify the way the system was developed and the how it operates, particularly in process visualization and data analysis, we also present the organization model of the system, the ser- vices it disposes, and the interface platforms for exploring data.
Resumo:
Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.
Resumo:
Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
Tese de Doutoramento - Programa Doutoral em Engenharia Industrial e Sistemas (PDEIS)
Resumo:
The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.
Resumo:
This paper presents an improved version of an application whose goal is to provide a simple and intuitive way to use multicriteria decision methods in day-to-day decision problems. The application allows comparisons between several alternatives with several criteria, always keeping a permanent backup of both model and results, and provides a framework to incorporate new methods in the future. Developed in C#, the application implements the AHP, SMART and Value Functions methods.
Resumo:
BACKGROUND: An autoimmune disease is characterized by tissue damage, caused by self-reactivity of different effector mechanisms of the immune system, namely antibodies and T cells. All autoimmune diseases, to some extent, have implications for fertility and obstetrics. Currently, due to available treatments and specialised care for pregnant women with autoimmune disease, the prognosis for both mother and child has improved significantly. However these pregnancies are always high risk. The purpose of this study is to analyse the fertility/pregnancy process of women with systemic and organ-specific autoimmune diseases and assess pathological and treatment implications. METHODS: The authors performed an analysis of the clinical records and relevant obstetric history of five patients representing five distinct autoimmune pathological scenarios, selected from Autoimmune Disease Consultation at the Hospital of Braga, and reviewed the literature. RESULTS: The five clinical cases are the following: Case 1-28 years old with systemic lupus erythematosus, and clinical remission of the disease, under medication with hydroxychloroquine, prednisolone and acetylsalicylic acid, with incomplete miscarriage at 7 weeks of gestation without signs of thrombosis. Case 2-44 years old with history of two late miscarriages, a single preterm delivery (33 weeks) and multiple thrombotic events over the years, was diagnosed with antiphospholipid syndrome after acute myocardial infarction. Case 3-31 years old with polymyositis, treated with azathioprine for 3 years with complete remission of the disease, took the informed decision to get pregnant after medical consultation and full weaning from azathioprine, and gave birth to a healthy term new-born. Case 4-38 years old pregnant woman developed Behcet's syndrome during the final 15 weeks of gestation and with disease exacerbation after delivery. Case 5-36 years old with autoimmune thyroiditis diagnosed during her first pregnancy, with difficult control over the thyroid function over the years and first trimester miscarriage, suffered a second miscarriage despite clinical stability and antibody regression. CONCLUSIONS: As described in literature, the authors found a strong association between autoimmune disease and obstetric complications, especially with systemic lupus erythematosus, antiphospholipid syndrome and autoimmune thyroiditis.
Resumo:
Doctoral Dissertation for PhD degree in Industrial and Systems Engineering
Resumo:
[Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. We took advantage of a commercially available hydrogel, Carbopol, a vehicle for topical administration that maintains a moist environment within the wound site. We hypothesized that the incorporation of LLKKK18 conjugated to dextrin would improve the healing process in rat burns. Whereas the hydrogel improves healing, LLKKK18 released from the dextrin conjugates further accelerates wound closure, and simultaneously improving the quality of healing. Indeed, the release of LLKKK18 reduces oxidative stress and inflammation (low neutrophil and macrophage infiltration and pro-inflammatory cytokines levels). Importantly, it induced a faster resolution of the inflammatory stage through early M2 macrophage recruitment. In addition, LLKKK18 stimulates angiogenesis (increased VEGF and microvessel development in vivo), potentially contributing to more effective transport of nutrients and cytokines. Moreover, collagen staining evaluated by Masson’s Trichrome was visually much more intense after treatment with LLKKK18, suggesting higher collagen deposition. (...)
Resumo:
Objective Conduct a systematic review to investigate whether healthy elderly have deficits in the decision-making process when compared to the young. Methods We performed a systematic search on SciELO, Lilacs, PsycINFO, Scopus and PubMed database with keywords decision making and aging (according to the description of Mesh terms) at least 10 years. Results We found nine studies from different countries, who investigated 441 young and 377 elderly. All studies used the IOWA Gambling Task as a way of benchmarking the process of decision making. The analysis showed that 78% of the articles did not have significant differences between groups. However, 100% of the studies that assessed learning did find relevant differences. Furthermore, studies that observed the behavior of individuals in the face of losses and gains, 60% of articles showed that the elderly has more disadvantageous choices throughout the task. Conclusion: The consulted literature showed no consensus on the existence of differences in performance of the decision-making process between old and young, but it is observed that the elderly has deficits in learning and a tendency to fewer advantageous choices.
Resumo:
The environmental and socio-economic importance of coastal areas is widely recognized, but at present these areas face severe weaknesses and high-risk situations. The increased demand and growing human occupation of coastal zones have greatly contributed to exacerbating such weaknesses. Today, throughout the world, in all countries with coastal regions, episodes of waves overtopping and coastal flooding are frequent. These episodes are usually responsible for property losses and often put human lives at risk. The floods are caused by coastal storms primarily due to the action of very strong winds. The propagation of these storms towards the coast induces high water levels. It is expected that climate change phenomena will contribute to the intensification of coastal storms. In this context, an estimation of coastal flooding hazards is of paramount importance for the planning and management of coastal zones. Consequently, carrying out a series of storm scenarios and analyzing their impacts through numerical modeling is of prime interest to coastal decision-makers. Firstly, throughout this work, historical storm tracks and intensities are characterized for the northeastern region of United States coast, in terms of probability of occurrence. Secondly, several storm events with high potential of occurrence are generated using a specific tool of DelftDashboard interface for Delft3D software. Hydrodynamic models are then used to generate ensemble simulations to assess storms' effects on coastal water levels. For the United States’ northeastern coast, a highly refined regional domain is considered surrounding the area of The Battery, New York, situated in New York Harbor. Based on statistical data of numerical modeling results, a review of the impact of coastal storms to different locations within the study area is performed.
Resumo:
Football is considered nowadays one of the most popular sports. In the betting world, it has acquired an outstanding position, which moves millions of euros during the period of a single football match. The lack of profitability of football betting users has been stressed as a problem. This lack gave origin to this research proposal, which it is going to analyse the possibility of existing a way to support the users to increase their profits on their bets. Data mining models were induced with the purpose of supporting the gamblers to increase their profits in the medium/long term. Being conscience that the models can fail, the results achieved by four of the seven targets in the models are encouraging and suggest that the system can help to increase the profits. All defined targets have two possible classes to predict, for example, if there are more or less than 7.5 corners in a single game. The data mining models of the targets, more or less than 7.5 corners, 8.5 corners, 1.5 goals and 3.5 goals achieved the pre-defined thresholds. The models were implemented in a prototype, which it is a pervasive decision support system. This system was developed with the purpose to be an interface for any user, both for an expert user as to a user who has no knowledge in football games.
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.
Resumo:
Tese de Doutoramento em Engenharia Biomédica.