897 resultados para brain morphology and function in diabetes
Resumo:
Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.
Resumo:
In diabetes mellitus (DM), podocyte apoptosis leads to albuminuria and nephropathy progression. Low-density lipoprotein receptor-related protein 6 (LRP6) is WNT pathway receptor that is involved in podocyte death, adhesion and motility. Glycogen synthase kinase 3 (GSK3) interaction with p53 (GSK3-p53) promotes apoptosis in carcinoma cells. It is unknown if GSK3-p53 contributes to podocyte apoptosis in DM. In experimental DM, green tea (GT) reduces albuminuria by an unknown mechanism. In the present study, we assessed the role of the GSK3β-p53 in podocyte apoptosis and the effects of GT on these abnormalities. In diabetic spontaneously hypertensive rats (SHRs), GT prevents podocyte's p-LRP6 expression reduction, increased GSK3β-p53 and high p53 levels. In diabetic SHR rats, GT reduces podocyte apoptosis, foot process effacement and albuminuria. In immortalized mouse podocytes (iMPs), high glucose (HG), silencing RNA (siRNA) or blocking LRP6 (DKK-1) reduced p-LRP6 expression, leading to high GSK3β-p53, p53 expression, apoptosis and increased albumin influx. GSK3β blockade by BIO reduced GSK3β-p53 and podocyte apoptosis. In iMPs under HG, GT reduced apoptosis and the albumin influx by blocking GSK3β-p53 following the rise in p-LRP6 expression. These effects of GT were prevented by LRP6 siRNA or DKK-1. In conclusion, in DM, WNT inhibition, via LRP6, increases GSK3β-p53 and podocyte apoptosis. Maneuvers that inactivate GSK3β-p53, such as GT, may be renoprotective in DM.
Resumo:
In specialized literature, reports on anatomy of miners in host plants are few in number. These agents trigger excavations, or paths, by consumption of plant inner tissues by larvae of several insects. The aim of this work was to investigate leaf miner occurrence in Commelina diffusa (a cosmopolitan plant) and Floscopa glabrata (an amphibious plant) using anatomical techniques. The place where the plants were collected is subjected to seasonal floods, consequently both the species were exposed to the same weather conditions and seasonal floods. This study showed that members of Agromyzidae and Chironomidae families, which are Diptera endophytophagous larvae types, were responsible for the tunnels. Moreover, in Commelina diffusa Agromyzidae larvae were found, while in Floscopa glabrata three Chironomidae cephalic exuviae were found. The miners, as can be seen from anatomical studies, used only mesophyll parenchyma tissues for feeding, causing the formation of linear mines. In addition, in both the species, the epidermis and the medium-sized vascular units were kept intact, showing no structural modification, such as neoformation of tissues.
Resumo:
During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.
Resumo:
Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5%) than in non-obese individuals (10.9%) [P = 0.02; OR = 2.0 (95%CI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.
Resumo:
The occipital dysplasia has been characterized by a dorsal enlargement of the foramen magnum which can vary in size and shape. Clinical signs may be present or not in animals with occipital dysplasia. The purpose of this study was to radiographically analyze the morphology and morphometry of the foramen magnum of thirty healthy dogs. This study chose to use fifteen Yorkshire terrier dogs and fifteen Toy Poodle dogs in order to characterize the radiographic aspects of the foramen magnum and contribute to the diagnosis and critical analysis of the occipital dysplasia importance. According to the foramen magnum morphology and tracings, it was possible to classify the radiographic aspects into different shapes varing from oval and quadrangular. Out of 26 (86.7%) animals had a dorsal enlargement and 4 (13.3%) showed normal foramen magnum. Animals without any clinical signs that are radiographically classified as dysplastic dogs may simply represent an anatomic variation of the foramen magnum.
Resumo:
Context: Patellofemoral pain syndrome (PFPS) is a common knee condition in athletes. Recently, researchers have indicated that factors proximal to the knee, including hip muscle weakness and motor control impairment, contribute to the development of PFPS. However, no investigators have evaluated eccentric hip muscle function in people with PFPS. Objective: To compare the eccentric hip muscle function between females with PFPS and a female control group. Design: Cross-sectional study. Setting: Musculoskeletal laboratory. Patients or Other Participants: Two groups of females were studied: a group with PFPS (n = 10) and a group with no history of lower extremity injury or surgery (n = 10). Intervention(s): Eccentric torque of the hip musculature was evaluated on an isokinetic dynamometer. Main Outcome Measure(s): Eccentric hip abduction, adduction, and external and internal rotation peak torque were measured and expressed as a percentage of body mass (Nm/kg x 100). We also evaluated eccentric hip adduction to abduction and internal to external rotation torque ratios. The peak torque value of 5 maximal eccentric contractions was used for calculation. Two-tailed, independent-samples t tests were used to compare torque results between groups. Results: Participants with PFPS exhibited much lower eccentric hip abduction (t(18) = -2.917, P = .008) and adduction (t(18) = -2.764, P =.009) peak torque values than did their healthy counterparts. No differences in eccentric hip external (t(18) = 0.45, P = .96) or internal (t(18) = -0.742, P =.47) rotation peak torque values were detected between the groups. The eccentric hip adduction to abduction torque ratio was much higher in the PFPS group than in the control group (t(18) = 2.113, P = .04), but we found no difference in the eccentric hip internal to external rotation torque ratios between the 2 groups (t(18) = -0.932, P = .36). Conclusions: Participants with PFPS demonstrated lower eccentric hip abduction and adduction peak torque and higher eccentric adduction to abduction torque ratios when compared with control participants. Thus, clinicians should consider eccentric hip abduction strengthening exercises when developing rehabilitation programs for females with PFPS.
Resumo:
Background: An evaluation of patients' preferences is necessary to understand the demand for different insulin delivery systems. The aim of this study was to investigate the association between socioeconomic status (SES) and patients' preferences and willingness to pay (WTP) for various attributes of insulin administration for diabetes management. Methods: We conducted a discrete choice experiment (DCE) to determine patients' preferences and their WTP for hypothetical insulin treatments. Both self-reported annual household income and education completed were used to explore differences in treatment preferences and WTP for different attributes of treatment across different levels of SES. Results: The DCE questionnaire was successfully completed by 274 patients. Overall, glucose control was the most valued attribute by all socioeconomic groups, while route of insulin delivery was not as important. Patients with higher incomes were willing to pay significantly more for better glucose control and to avoid adverse events compared to lower income groups. In addition, they were willing to pay more for an oral short-acting insulin ($Can 71.65 [95% confidence interval, $40.68, $102.62]) compared to the low income group ($Can 9.85 [95% confidence interval, 14.86, 34.56; P < 0.01]). Conversely, there were no differences in preferences when the sample was stratified by level of education. Conclusions: This study revealed that preferences and WTP for insulin therapy are influenced by income but not by level of education. Specifically, the higher the income, the greater desire for an oral insulin delivery system, whereas an inhaled route becomes less important for patients.
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Resumo:
Background: Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance) could be a common root for RHTN (resistant hypertension) or RHTN plus type 2 diabetes (T2D) comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D), and its relationship with serum adiponectin concentration. Methods: Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years) were evaluated using the following parameters: BMI (body mass index), biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV) in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results: Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone) and night periods (sympathetic > parasympathetic tone). T2D group had increased BMI and serum triglyceride levels (mean 33.7 +/- 4.0 vs 26.6 +/- 3.7 kg/m(2) - p = 0.00; 254.8 +/- 226.4 vs 108.6 +/- 48.7 mg/dL - p = 0.04), lower levels of adiponectin (6729.7 +/- 3381.5 vs 10911.5 +/- 5554.0 ng/mL - p = 0.04) and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r = 0.37 [95% CI - 0.04 - 1.00] p = 0.03), negatively with HbA1c levels (r = -0.58 [95% CI -1.00 - -0.3] p = 0.00) and also adiponectin correlated negatively with HbA1c levels (r = -0.40 [95% CI -1.00 - -0.07] p = 0.02). Conclusion: Type 2 diabetes comorbidity is associated with greater autonomic imbalance, lower adiponectin levels and greater BMI in RHTN patients. Similar circadian disruption was also found in both groups indicating the importance of lifestyle behavior in the genesis of RHTN.
Resumo:
Background Peripheral muscle strength and endurance are decreased in patients with chronic pulmonary diseases and seem to contribute to patients' exercise intolerance. However, the authors are not aware of any studies evaluating peripheral muscle function in children with asthma. It seems to be implied that children with asthma have lower aerobic fitness, but there are limited studies comparing the aerobic capacity of children with and without asthma. The present study aimed to evaluate muscle strength and endurance in children with persistent asthma and their association with aerobic capacity and inhaled corticosteroid consumption. Methods Forty children with mild persistent asthma (MPA) or severe persistent asthma (SPA) (N=20 each) and 20 children without asthma (control group) were evaluated. Upper (pectoralis and latissimus dorsi) and lower (quadriceps) muscle strength and endurance were assessed, and cardiopulmonary exercise testing was performed. Inhaled corticosteroid consumption during the last 6 and 24 months was also quantified. Results Children with SPA presented a reduction in peak oxygen consumption (VO(2)) (28.2 +/- 8.1 vs 34.7 +/- 6.9 ml/kg/min; p<0.01) and quadriceps endurance (43.1 +/- 6.7 vs 80.9 +/- 11.9 repetitions; p<0.05) compared with the control group, but not the MPA group (31.5 +/- 6.1 ml/kg/min and 56.7 +/- 47.7 repetitions respectively; p>0.05). Maximal upper and lower muscle strength was preserved in children with both mild and severe asthma (p>0.05). Finally, the authors observed that lower muscle endurance weakness was not associated with reductions in either peak VO(2) (r=0.22, p>0.05) or corticosteroid consumption (r=-0.31, p>0.05) in children with asthma. Conclusion The findings suggest that cardiopulmonary exercise and lower limb muscle endurance should be a priority during physical training programs for children with severe asthma.
Resumo:
Background: Genetic polymorphisms of the TCF7L2 gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the TCF7L2 polymorphism rs7903146 on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population. Methods: We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the TCF7L2 gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population. Results: SNP rs7903146 of the TCF7L2 gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776). Conclusion: TCF7L2 rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.
Resumo:
Managing schizophrenia has never been a trivial matter. Furthermore, while classical antipsychotics induce extrapyramidal side effects and hyperprolactinaemia, atypical antipsychotics lead to diabetes, hyperlipidaemia, and weight gain. Moreover, even with newer drugs, a sizable proportion of patients do not show significant improvement. Alstonine is an indole alkaloid identified as the major component of a plant-based remedy used in Nigeria to treat the mentally ill. Alstonine presents a clear antipsychotic profile in rodents, apparently with differential effects in distinct dopaminergic pathways. The aim of this study was to complement the antipsychotic profile of alstonine, verifying its effects on brain amines in mouse frontal cortex and striatum. Additionally, we examined if alstonine induces some hormonal and metabolic changes common to antipsychotics. HPLC data reveal that alstonine increases serotonergic transmission and increases intraneuronal dopamine catabolism. In relation to possible side effects, preliminary data suggest that alstonine does not affect prolactin levels, does not induce gains in body weight, but prevents the expected fasting-induced decrease in glucose levels. Overall, this study reinforces the proposal that alstonine is a potential innovative antipsychotic, and that a comprehensive understanding of its neurochemical basis may open new avenues to developing newer antipsychotic medications.
Resumo:
The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the ""pollination syndrome"" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.
Resumo:
P>During the lifetime of an angiosperm plant various important processes such as floral transition, specification of floral organ identity and floral determinacy, are controlled by members of the MADS domain transcription factor family. To investigate the possible non-cell-autonomous function of MADS domain proteins, we expressed GFP-tagged clones of AGAMOUS (AG), APETALA3 (AP3), PISTILLATA (PI) and SEPALLATA3 (SEP3) under the control of the MERISTEMLAYER1 promoter in Arabidopsis thaliana plants. Morphological analyses revealed that epidermal overexpression was sufficient for homeotic changes in floral organs, but that it did not result in early flowering or terminal flower phenotypes that are associated with constitutive overexpression of these proteins. Localisations of the tagged proteins in these plants were analysed with confocal laser scanning microscopy in leaf tissue, inflorescence meristems and floral meristems. We demonstrated that only AG is able to move via secondary plasmodesmata from the epidermal cell layer to the subepidermal cell layer in the floral meristem and to a lesser extent in the inflorescence meristem. To study the homeotic effects in more detail, the capacity of trafficking AG to complement the ag mutant phenotype was compared with the capacity of the non-inwards-moving AP3 protein to complement the ap3 mutant phenotype. While epidermal expression of AG gave full complementation, AP3 appeared not to be able to drive all homeotic functions from the epidermis, perhaps reflecting the difference in mobility of these proteins.