923 resultados para boundary integral equation method
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
On the numerical solution of a Cauchy problem in an elastostatic half-plane with a bounded inclusion
Resumo:
We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10
Resumo:
In this Letter we introduce a continuum model of neural tissue that include the effects of so-called spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon the non-local network connectivity, synaptic response, and firing rate of a single neuron. A phenomenological model of SFA is examined whereby the firing rate is taken to be a simple state-dependent threshold function. As in the case without SFA classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps). Importantly an analysis of bump stability using recent Evans function techniques shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Direct numerical simulations both confirm our theoretical predictions and illustrate the rich dynamic behavior of this model, including the appearance of self-replicating bumps.
Resumo:
We compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.
Resumo:
This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.
In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.
Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.
Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.
The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.
Resumo:
Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
A vertex-centred finite volume method (FVM) for the Cahn-Hilliard (CH) and recently proposed Cahn-Hilliard-reaction (CHR) equations is presented. Information at control volume faces is computed using a high-order least-squares approach based on Taylor series approximations. This least-squares problem explicitly includes the variational boundary condition (VBC) that ensures that the discrete equations satisfy all of the boundary conditions. We use this approach to solve the CH and CHR equations in one and two dimensions and show that our scheme satisfies the VBC to at least second order. For the CH equation we show evidence of conservative, gradient stable solutions, however for the CHR equation, strict gradient-stability is more challenging to achieve.