1000 resultados para borrowing problems
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.
Resumo:
This paper deals with the adaptive mesh generation for singularly perturbed nonlinear parameterized problems with a comparative research study on them. We propose an a posteriori error estimate for singularly perturbed parameterized problems by moving mesh methods with fixed number of mesh points. The well known a priori meshes are compared with the proposed one. The comparison results show that the proposed numerical method is highly effective for the generation of layer adapted a posteriori meshes. A numerical experiment of the error behavior on different meshes is carried out to highlight the comparison of the approximated solutions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
A lower-bound limit analysis formulation, by using two-dimensional finite elements, the three-dimensional Mohr-Coulomb yield criterion, and nonlinear optimization, has been given to deal with an axisymmetric geomechanics stability problem. The optimization was performed using an interior point method based on the logarithmic barrier function. The yield surface was smoothened (1) by removing the tip singularity at the apex of the pyramid in the meridian plane and (2) by eliminating the stress discontinuities at the corners of the yield hexagon in the pi-plane. The circumferential stress (sigma(theta)) need not be assumed. With the proposed methodology, for a circular footing, the bearing-capacity factors N-c, N-q, and N-gamma for different values of phi have been computed. For phi = 0, the variation of N-c with changes in the factor m, which accounts for a linear increase of cohesion with depth, has been evaluated. Failure patterns for a few cases have also been drawn. The results from the formulation provide a good match with the solutions available from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
The Exact Cover problem takes a universe U of n elements, a family F of m subsets of U and a positive integer k, and decides whether there exists a subfamily(set cover) F' of size at most k such that each element is covered by exactly one set. The Unique Cover problem also takes the same input and decides whether there is a subfamily F' subset of F such that at least k of the elements F' covers are covered uniquely(by exactly one set). Both these problems are known to be NP-complete. In the parameterized setting, when parameterized by k, Exact Cover is W1]-hard. While Unique Cover is FPT under the same parameter, it is known to not admit a polynomial kernel under standard complexity-theoretic assumptions. In this paper, we investigate these two problems under the assumption that every set satisfies a given geometric property Pi. Specifically, we consider the universe to be a set of n points in a real space R-d, d being a positive integer. When d = 2 we consider the problem when. requires all sets to be unit squares or lines. When d > 2, we consider the problem where. requires all sets to be hyperplanes in R-d. These special versions of the problems are also known to be NP-complete. When parameterizing by k, the Unique Cover problem has a polynomial size kernel for all the above geometric versions. The Exact Cover problem turns out to be W1]-hard for squares, but FPT for lines and hyperplanes. Further, we also consider the Unique Set Cover problem, which takes the same input and decides whether there is a set cover which covers at least k elements uniquely. To the best of our knowledge, this is a new problem, and we show that it is NP-complete (even for the case of lines). In fact, the problem turns out to be W1]-hard in the abstract setting, when parameterized by k. However, when we restrict ourselves to the lines and hyperplanes versions, we obtain FPT algorithms.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
We give an overview of recent results and techniques in parameterized algorithms for graph modification problems.
Resumo:
In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.
Resumo:
In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
In the present paper, it is shown that the zero series eigenfunctions of Reissner plate cracks/notches fracture problems are analogous to the eigenfunctions of anti-plane and in-plane. The singularity in the double series expression of plate problems only arises in zero series parts. In view of the relationship with eigen-values of anti-plane and in-plane problem, the solution of eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problem. As a result the corresponding eigen-values or the corresponding eigen-value solving programs with respect to the anti-plane and in-plane problems can be employed and many aggressive SIF computed methods of plane problems can be employed in the plate. Based on those, the approximate relationship of SIFs between the plate and the plane fracture problems is figured out, and the effect relationship of the plate thickness on SIF is given.