976 resultados para bone implant
Resumo:
The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.
Resumo:
This patient report presents an unusual onlay bone graft failure following local cocaine application. Three months after the bone grafting procedure performed in the anterior maxilla for bone volume augmentation, the bone graft was totally exposed in the oral cavity as a result of the rubbing of cocaine on the gingival tissue that covered the bone graft. A histologic view of the removed bone fragment presented not only an area of necrosis but also ample spaces filled with necrosis material and resorption areas. Dental practitioners need to be aware of this phenomenon because such patients often do not report the use of drugs, particularly cocaine. Copyright © 2005 by Lippincott Williams & Wilkins.
Resumo:
The purpose of this study was to histomorphometrically evaluate the bone-to-implant contact and bone area around a titanium implant retrieved from a human lower jaw. A screw-shaped titanium implant (sandblasted and acid-etched surface) was removed from a 68-year-old male after having been in function for 40 months because of a fracture of the abutment screw. Following the implant removal, an undecalcified section was obtained. The histomorphometric analysis showed a rate of 75.40% of bone-to-implant contact and 89.30% of bone area filling within the limits of the implant threads. The surrounding bone healed in a well-organized pattern and could not be differentiated from the anginal alveolus. The histologic evidence showed a high degree of osseointegration in a threaded, sandblasted, and acid-etched implant retrieved from a human lower jaw after functional loading for 40 months. Copyright © 2005 by Lippincott Williams & Wilkins.
Resumo:
Purpose: This article reports preliminary clinical results of the Speed Master system, a method for immediate loading of implants for the treatment of mandibular edentulism. Materials and Methods: Fifteen patients with edentulous mandibles were consecutively included in the study. Each received 4 implants between the mental foramina placed using the system's surgical guides. Permanent fixed prostheses fabricated over premanufactured titanium bars were attached to the implants on the day of implant placement. The patients were followed for 15 to 27 months (mean, 19 months). Peri-implant tissues were periodically evaluated. Marginal bone loss was monitored with periapical radiographs using a computerized technique. Satisfaction was assessed by means of a questionnaire. Results: The overall implant and prosthetic survival rates were 100%. At the time of the final follow-up visit, mean marginal bone loss was 1.11 mm, and bleeding on probing was not observed. Only 6.7% of the patients reported any discomfort during treatment, and all patients would recommend the procedure to others. Discussion: The immediate loading of implants placed in the edentulous mandible with the Speed Master surgical and prosthetic protocol reduces treatment time and number of surgical procedures in comparison to classic delayed loading protocols. Conclusion: The rehabilitation of the mandible with an immediately delivered occlusally loaded hybrid prosthesis supported by 4 implants does not appear to jeopardize the success of the osseointegration and represents a viable treatment option.
Resumo:
Purpose: This study intends to evaluate BMP (Bone Morphogenetic Protein) implant and BMP implant plus PRP (Platelet Rich Plasma) in rabbit orbital fractures, searching for tissue reaction, by radiological and morfometrical analysis. Methods:Third six white rabbits were submitted to orbital floor fracture and distributed in three groups: G1, with rabbits receiving a plate containing decalcified bone matrix and BMP; G2, with rabbits receiving the implant with BMP wrapped by PRP; G3, the control group where it was made the fracture only. The animals were evaluated radiologically after surgery and at sacrifice time in 7, 30, 90 and 180th day after surgery. After sacrifice, a block containing the right orbital tissue was extracted and prepared to morphological and morphometrical analysis. Results: An intensive linfomononuclear inflammatory reaction was observed at 7th day in G1 e G2, witch decreased after the 30th day; mesenchimal cells, osteoblasts, new bone and progressive cavitation of the implant were also observed, besides signs of calcium deposition by radiological study. In the control group fibrosis at the site of fracture was identified only. Conclusion: BMP seemed a good orbital implant producing new bone at the implant site and correcting bone defect.There was not observed acceleration of osteoinduction when the implant was associated with PRP.
Resumo:
Purpose: To evaluate a bone morphogenetic protein (BMP) implant with and without platelet-rich plasma (PRP), which is supposed to accelerate fracture consolidation in the orbit fracture treatment. Methods: Thirty-six white rabbits were subjected to orbital fracture and treated in three groups: BMP implant fracture repair (G1), BMP plus PRP implant fracture repair (G2), and fracture and spontaneous repair (G3). The animals were sacrificed at 7, 30, 90, and 180 days after surgery. A radiology evaluation was carried out on the 7th day after the fracture and at the sacrifice moments. After the animals' death, the orbital content material was removed and prepared for morphological and morphometric analysis. Results: Radiology suggested intramembranous and progressive cavitation and ossification without a reduction in implant size and with signs of calcium deposition; these events were confirmed by histological analysis, which showed a lymphomononuclear inflammatory reaction in G1 and G2, more intense 7 days after surgery and reducing after 30 days. Associating PRP with BMP did not accelerate bone induction. Conclusion: BMP implant promotes bone induction, integration at fracture site, scarce inflammatory reaction, and may be a good alternative in orbit fracture reconstruction. The addition of PRP to the BMP plate did not accelerate the resolution, and its use is not necessary. Copyright © Informa Healthcare USA, Inc.
Resumo:
Bone spreading technique (BST) is a horizontal augmentation with minimal trauma for simultaneous implant placement and an alternative to Summer's osteotome technique both for its clinical use and for the armamentarium. The foremost advantage of the crest dilation technique is a substantially less invasive method; the buccal wall expands after the medullary bone is compressed against the cortical bone. The lateral dilation and compaction of medullary bone improved primary stability. The vital difference is that the BST used in this case report avoided discomfort of the patient, thus eliminating the need for malleting.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on osseointegration. Material and methods: Implants were installed immediately into extraction sockets in the mandibles of six Labrador dogs. In the control sites, the implants were positioned in the center of the alveolus, while in the test sites, the implants were positioned 0.8 mm deeper and more lingually. After 4 months of healing, the resorptive patterns of the alveolar crest were evaluated histomorphometrically. Results: All implants were integrated in mineralized bone, mainly composed of mature lamellar bone. The alveolar crest underwent resorption at the control as well as at the test sites. After 4 months of healing, at the buccal aspects of the control and test sites, the location of the implant rough/smooth limit to the alveolar crest was 2±0.9 mm and 0.6±0.9 mm, respectively (P<0.05). At the lingual aspect, the bony crest was located 0.4 mm apically and 0.2 mm coronally to the implant rough/smooth limit at the control and test sites, respectively (NS). Conclusions: From a clinical point of view, implants installed into extraction sockets should be positioned approximately 1 mm deeper than the level of the buccal alveolar crest and in a lingual position in relation to the center of the alveolus in order to reduce or eliminate the exposure above the alveolar crest of the endosseous (rough) portion of the implant. © 2009 John Wiley & Sons A/S.
Resumo:
The aim of this study was to evaluate the effect of platelet rich plasma (PRP) associated to bovine inorganic bone (Bio-Oss®; Geistlich) or bioactive glass (Bio-Gran®; Orthovita, Implant Innovations) on bone healing. Bone cavities were prepared in both sides of the mandible of 4 adult male dogs. The cavities were divided into 4 groups according to the filling material as follows: control, PRP, PRP/Bio-Oss, PRP/Bio-Gran. The animals were sacrificed after 120 days and histological and histomorphometrical analysis was performed. The control group showed 80.6% of bone formation in the longitudinal sections at 6 mm depth and 83.7% at 13 mm depth. The transverse sections displayed 74.2% at both 6 and 13 mm depths. The PRP group showed 21.1% of bone formation in the longitudinal sections at 6 mm depth, and 23.1% at 13 mm depth. The transverse sections presented 28.98% of bone formation at 6 mm depth and 41.2% at 13 mm depth. The PRP/Bio-Gran group showed 25.1% of bone formation in the longitudinal sections at 6 mm depth and 30.4% at 13 mm depth. In the transverse sections, the bone formation was 43.0% at 6 mm depth and 39.7% at 13 mm depth. The PRP/Bio-Oss group showed 35.5% of bone formation in the longitudinal sections at 6 mm depth and 42% at 13 mm depth. In the transversal sections, the bone formation was 26.8% and 31.2% at the depths of 6 and 13 mm, respectively. PRP alone or associated with bovine inorganic bone or bioglass had no significant effect in bone healing.
Resumo:
Aim: Cyclosporine A (CsA) is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA) received daily subcutaneous injection of CsA (10mg/kg body weight) and the control group (CTL) received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter) was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 - p <0.01). In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 - p <0.05). In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 - p= 0.001). Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.
Resumo:
Craniofacial osseointegrated implants enabled producing implant-retained facial prosthesis, namely the orbital prosthesis. Aim: To evaluate the length and width of the bone structure of the peri-orbital region and to present the method validation. Methods: Computed tomography scans of 30 dry human skulls were obtained in order to register linear length and width measurements of the periorbital region. Two examiners made the measurements twice with intervals of at least 7 days between them. Data were analyzed by descriptive statistics and the paired Student's t-test was used as inferential technique (SAS, α =0.05). Results: In most cases, the intra- and inter-examiner variations were not significant (p>0.05). Therefore, the method proposed was considered as precise and valid for the measurement of the peri-orbital region. The measured points correspond to the hours of a clock. The major lengths were observed at 1 h (18.32 mm) for the left peri-orbital bone and at 11h (19.28 mm) for the right peri-orbital bone, followed by the points situated at 2h (13.05 mm) and 12h (11.37 mm) for the left side and at 10 h (12.34 mm) and 12 h (11.56 mm) for the right side. It was verified that the three points with lowest values followed the same anatomical sequence in the supraorbital rim for the right and left orbits, showing compatibility with the insertion of the intraoral osseointegrated implants. The medial wall of both orbits did not present sufficient length to allow the insertion of intraoral or craniofacial implants. Conclusions: The largest width points were observed in the supraorbital rim and in the infralateral region of both orbits and those of smallest width were found in the supralateral region of both orbits.
Resumo:
Aim: To describe the adaptation of the Edentulous Ridge Expansion (E.R.E.) technique for implant removal. Material and Methods: The E.R.E. technique for the removal of failed implants is described in detail. A clinical case is also reported. In a patient carrying a full arch removable prosthesis in the upper jaw, sustained by two bars, two out of five implants were found to be fractured. Bucco-lingual partial-thickness flaps were used to access the fractured implants. The implants were subsequently removed applying the E.R.E. technique. Two recipient sites were prepared in the same position, using bone expanders, and two new implants were installed. Results: After 4 months of healing, the implants were integrated and a new bar was fabricated, and the old prosthesis readapted. Conclusion: The ERE technique may be successfully applied for the removal of failed implants, and the immediate or delayed reinstallation of new implants. © 2012 John Wiley & Sons A/S.