996 resultados para body schema


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body Area Network, a new wireless networking paradigm, promises to revolutionize the healthcare applications. A number of tiny sensor nodes are strategically placed in and around the human body to obtain physiological information. The sensor nodes are connected to a coordinator or a data collector to form a Body Area Network. The tiny devices may sense physiological parameters of emergency in nature (e.g. abnormality in heart bit rate, increase of glucose level above the threshold etc.) that needs immediate attention of a physician. Due to ultra low power requirement of wireless body area network, most of the time, the coordinator and devices are expected to be in the dormant mode, categorically when network is not operational. This leads to an open question, how to handle and meet the QoS requirement of emergency data when network is not operational? Emergency handling becomes more challenging at the MAC layer, if the channel access related information is unknown to the device with emergency message. The aforementioned scenarios are very likely scenarios in a MICS (Medical Implant Communication Service, 402-405 MHz) based healthcare systems. This paper proposes a mechanism for timely and reliable transfer of emergency data in a MICS based Body Area Network. We validate our protocol design with simulation in a C++ framework. Our simulation results show that more than 99 p ercentage of the time emergency messages are reached at the coordinator with a delay of 400ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pocket and the free surface unlike in the convex nosed case. From measurements of the unsteady pressure in the concave nose portion, we show that in this case, the maximum pressures are significantly lower than the classically expected ``water hammer'' pressures and also lower than those generally measured on other geometries. Thus, the presence of an air pocket in the case of a concave nosed body adds an interesting dimension to the classical problem of impact of solid bodies on to a free surface. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neonatal temperature monitoring system operating in subthreshold regime that utilizes time mode signal processing is presented. Resistance deviations in a thermistor due to temperature variations are converted to delay variations that are subsequently quantized by a Delay measurement unit (DMU). The DMU does away with the need for any analog circuitry and is synthesizable entirely from digital logic. An FPGA implementation of the system demonstrates the viability of employing time mode signal processing, and measured results show that temperature resolution better than 0.1 degrees C can be achieved using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (similar to 2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Gamma-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Gamma-M direction changes towards a linear dispersion with volume expansion. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In one dimension, noninteracting particles can undergo a localization-delocalization transition in a quasiperiodic potential. Recent studies have suggested that this transition transforms into a many-body localization (MBL) transition upon the introduction of interactions. It has also been shown that mobility edges can appear in the single particle spectrum for certain types of quasiperiodic potentials. Here, we investigate the effect of interactions in two models with such mobility edges. Employing the technique of exact diagonalization for finite-sized systems, we calculate the level spacing distribution, time evolution of entanglement entropy, optical conductivity, and return probability to detect MBL. We find that MBL does indeed occur in one of the two models we study, but the entanglement appears to grow faster than logarithmically with time unlike in other MBL systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviors of a crack in body-centered-cubic metal Mo under different loading modes were studied using the molecular dynamics method. Dislocation emission was observed near the crack tip in response to mode II loading with theta = 0 degrees in which theta is the inclination angle of the slip plane with respect to the crack plane, and two full dislocations were observed at the stress level of K-II = 1.17 MPa m(1/2) without any evidence of crack extension. Within the range of 0 degrees less than or equal to theta less than or equal to 45 degrees, crack extension was observed in response to mode I loading, and the effect of crystal orientation on the crack propagation was studied, The crack propagated along the [111] slip direction without any evidence of dislocations emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica causes a range of life-threatening diseases in humans and animals worldwide. Current treatments for S. enterica infections are not sufficiently effective, and there is a need to develop new vaccines and therapeutics. An understanding of how S. enterica spreads in tissues has very important implications for targeting bacteria with vaccine-induced immune responses and antimicrobial drugs. Development of new control strategies would benefit from a more sophisticated evaluation of bacterial location, spatiotemporal patterns of spread and distribution in the tissues, and sites of microbial persistence. We review here recent studies of S. enterica serovar Typhimurium (S. Typhimurium) infections in mice, an established model of systemic typhoid fever in humans, which suggest that continuous bacterial spread to new infection foci and host phagocytes is an essential trait in the virulence of S. enterica during systemic infections. We further highlight how infections within host tissues are truly heterogeneous processes despite the fact that they are caused by the expansion of a genetically homogeneous microbial population. We conclude by discussing how understanding the within-host quantitative, spatial and temporal dynamics of S. enterica infections might aid the development of novel targeted preventative measures and drug regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a phase transformation from wurtzite in [0001]-oriented nanorods during uniaxial tensile loading and is the most stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A crystalline structure-load triaxiality map is developed to summarize the relationship between structure and loading.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) proposed by Daw and Baskes and Johnson's model, this paper constructs a new N-body potential for bcc crystal Mo. The procedure of constructing the new N-body potential can be applied to other metals. The dislocation emission from a crack tip has been simulated successfully using molecular dynamics method, the result is in good agreement with the elastic solution.