999 resultados para black hole physics
Resumo:
Cretaceous sediments from DSDP Site 530 have been analyzed for organic carbon isotopic composition. The d13C values in the sediments decrease from -22.7 per mil to -27.5 per mil in the following order: light-olive green mudstone/claystone, dark brown-red mudstone/siltstone/claystone, and black shale. This large range is primarily the result of variation in the relative amounts of terrestrial organic carbon superimposed on that derived from marine organisms. The black shales have an average d13C value of -25.9 per mil (range is from -23.7 per mil to -27.5 per mil). These values indicate that they originated primarily in terrigenous organic materials. The average d13C value present throughout the Cretaceous suggests that a large amount of terrestrial organic matter was supplied into this paleoenvironment, except during the Campanian, when an average d13C of -23.9 per mil is found near the marine end of the range.
Resumo:
Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).
Resumo:
One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.
Resumo:
The kind, sedimentation rate, and diagenesis of organic particles delivered to the North Atlantic seafloor during the Middle Jurassic-Early Cretaceous were responsible for the presence of carbonaceous sediments in Hole 534A. Organic-rich black clays formed from the rapid supply of organic matter; this organic matter was composed of either abundant, well-preserved, and poorly sorted particles of land plants deposited in clays and silty clays within terrigenous turbiditic sequences (tracheal facies) or abundant amorphous debris (xenomorphic facies) generated through the digestive tracts of marine zooplankton and sedimented as fecal pellets. Evidence for the fecal-pellet origin of xenomorphic debris is illustrated. Black clays were also produced in sediments containing less organic matter as a result of the black color of carbonized particles composing all or most of the residues (micrinitic facies). Slowly sedimented hematitic Aptian clays contain very little carbonized, organic debris that survived diagenetic oxidation. In the red calcareous clay sequence of the Late Jurassic, larger amounts of this oxidized debris turned several clay layers black or blackish red. Carbonized debris also dominates the residues recovered in interbedded black and green Albian clays. Carbonization of organic matter in these sediments either turned them black or provided the diagenetic environment for reduced iron. Carbonized debris is also appreciable in burrow-mottled black-green Kimmeridgian clay. The study of Hole 534A organic matter indicates that during the middle Callovian there was a rapid supply of terrigenous organic matter, followed by a late Callovian episode of rapidly supplied xenomorphic debris deposited as fecal pellets. The Late Jurassic-Berriasian was a time of slower sedimentation of organic matter, primarily of a marine dinoflagellate flora in a poorly preserved xenomorphic facies variously affected by diagenetic oxidation. Several intervals of carbonized tracheal tissue in the Oxfordian and Kimmeridgian suggest episodes of oxidized terrigenous matter. The same sequence of Callovian organic events is evident in much of the Early Cretaceous
Resumo:
During Leg 195 of the Ocean Drilling Program, Site 1202 was drilled in the subtropical northwestern Pacific Ocean beneath the Kuroshio (Black Current) between northern Taiwan and the Ryukyu Island Arc on the northern flank of the I-Lan Ridge at 1274 m water depth. The upper 110 m of the Site 1202 section, composed of dark grey calcareous silty clay, provide an expanded record of environmental changes during the last 28 kyr. The sediments were deposited at high sedimentation rates between 3.0 and 5.0 m/kyr and peak values of 9.0 m/kyr between 15.1 and 11.2 ka BP. Variations in the modes and sources of detrital sediment input, as inferred from sediment granulometry, mineralogy, and elemental XRF-scanner data, reflect changes in environmental boundary conditions related to sea-level changes, Kuroshio variability, and the climate-driven modes of fluvial runoff. The provenance data point to increased sediment supply from northwestern Taiwan between 28 and 19.5 ka BP and from East China sources between 19.5 and 11.2 ka BP. The change in provenance at 19.5 ka BP reflects increased fluvial runoff from the Yangtze River and strong sediment reworking from the East China Sea shelf in the course of increased humidity and postglacial sea-level rise, particularly after 15.1 ka BP. The Holocene was dominated by sediments that originated from rivers in northeastern Taiwan. For the pre-Holocene period prior to 11.2 ka BP, low portions of sortable silt (63-10 ?m) show that the Kuroshio did not enter the Okinawa Trough, because of low sea-level. In turn, high proportions of sortable silt and sediment provenance from northeastern Taiwan point to strong ocean circulation under the direct and persistent influence of the Kuroshio during the Holocene. The reentrance of the Kuroshio to the Okinawa Trough was heralded by two pulses in relative current strengthening at 11.2 and 9.5 ka BP, as documented by stepwise increases in sortable silt in the lower Holocene section. From a global perspective, environmental changes in the southern Okinawa Trough show affinities to climate change in the western Pacific warm pool with little influence of climate teleconnections from the North Atlantic realm, otherwise seen in many other marine and terrestrial palaeoclimate records from southeastern Asia.
Resumo:
The monograph presents results of deep-sea drilling in the Black Sea carried out in 1975. Detailed lithological, biostratigraphic and geochemical studies of Miocene-Holocene sediments have been carried out by specialists from institutes of the USSR Academy of Sciences, Moscow State University and other organizations. Drilling results are compared with geophysical data. Geological history of the Black Sea basin is considered as well.
Resumo:
At Site 534 in the Blake-Bahama Basin, western North Atlantic, an interval of 68 m of Maestrichtian (Upper Cretaceous) and upper middle to upper Eocene sediments consists of terrigenous siltstones, mudstones, and varicolored zeolitic claystones; minor recovery of micritic limestones, porcellanites, and quartzitic chert was made at this site as well. Comparisons with other Deep Sea Drilling Project (DSDP) sites in the western North Atlantic suggest that the following formations are present in this interval: Hatteras (Maestrichtian), Plantagenet (Maestrichtian and upper Eocene), Bermuda Rise (upper middle to upper Eocene), and the basal Blake Ridge Formation (upper middle to upper Eocene). Recognition of a Tertiary interval of the Plantagenet allows that formation to be divided into lower and upper informal units. Condensation makes this formal lithostratigraphic subdivision difficult. Together the formations record marked net condensed sedimentation (average rate ca. 2.5 m/m.y.) in strongly oxidizing bottom waters. From sedimentary structures and petrography, it is inferred that the terrigenous siltstones and micritic limestones were redeposited from the continental margin by turbidity currents. Chemical data plus petrography confirm relatively high plankton productivity during the upper Eocene. Much of the nonrecovered Eocene interval may represent chert and porcellanite. Fragments recovered were formed by replacement of relatively porous calciturbidites by opal-CT and quartz. Radiolarians in interbedded claystones rich in clinoptilolite show extensive dissolution. Relative to typical hemipelagic sediments, the claystones are enriched in many metals (Cu, Ni, Zn, Pb), particularly within manganese micronodules. The metal accumulation is related to a 30-m.y. period of slow net sediment accumulation, rather than to hydrothermal enrichment or to upward mobilization of metals from the underlying reduced Hatteras black shale facies. Elsewhere in the Blake-Bahama Basin, at Site 391, 22 km to the northwest, upper Eocene facies are missing, reportedly due to deep seafloor erosion of up to 800 m of the sedimentary succession. By contrast, the discovery that this interval is preserved at nearby Site 534 points to much less extensive seafloor erosion, possibly mostly in the Oligocene, which is missing at both DSDP Sites.
Resumo:
The organic matter contained within a series of Albian to Cenomanian, dark gray to black marls was characterized using pyrolysis techniques and analysis (elemental and carbon isotopes) of isolated kerogens. It was concluded that this material had a marine affinity. Variations in geochemical characteristics reflect differences in the extent of preservation, rather than changes in organic provenance. These changes appear to reflect differences in water depth and the position of the depositional site relative to the oxygen-minimum zone. Sediments displaying the most elevated levels of organiccarbon and hydrogen enrichment probably reflect sedimentation within the oxygen-minimum zone. Waters within the oxygen-minimum zone were probably dysaerobic, rather than anoxic. The presence of at least trace quantities of oxygen at the depositional site explains the poor degree of organic preservation and the material's largely gas-prone characteristics.
Resumo:
Lower and Upper Cretaceous sediments of the Maurice Ewing Bank, Site 511 (black shales, mudstones, zeolitic clays, and nannofossil chalk and ooze, 361 m thick) are characterized by an assemblage of planktonic foraminifers of low systematic diversity, including over 50 species. Representatives of Hedbergella, Globigerinelloides, Archaeoglobigerina, Whiteinella, Rugoglobigerina, and Heterohelix are predominant; species of Ticinella, Praeglobotruncana, Globotruncana, Schackoina, and Planoglobulina associated with some interbeds occur in smaller numbers. Planktonic foraminifers enable us to subdivide the Cretaceous sediments into Barremian-Aptian, Albian, upper Cenomanian, Turonian, Coniacian-Santonian, Santonian, Campanian, and upper Campanian-Maestrichtian intervals. The Lower Cretaceous (Albian) and Upper Cretaceous (upper Cenomanian-Turonian) are separated by a distinct hiatus and unconformity. In the Upper Cretaceous section, a hiatus may be present at the top of the Campanian. The upper Cenomanian-Santonian sediments are reduced in thickness, whereas the Campanian-Maestrichtian interval is expanded. In the Barremian-Aptian black shales, planktonic foraminifers are very rare: they were deposited in shallow water under anoxic conditions. In the Albian, when sedimentation conditions became oxidizing and the depth increased to 200-400 meters, they became more common. By the end of the Upper Cretaceous, depths appear to increase to 2000 meters. In the interbeds of calcareous sediments, planktonic foraminifers are common; in interbeds of zeolitic clays they are rare or absent (dissolution facies). Alternation of these types of sediments is especially characteristic of the Coniacian-lower Campanian, testifying to abrupt CCD fluctuations. The planktonic foraminifers of the Falkland Plateau belong to the Austral Province of the Southern Hemisphere. In their systematic composition they are extremely similar to microfauna of the Boreal Province of the Northern Hemisphere.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng/m**3) compared to the AE10 results (1.6 ± 2.1 ng/m**3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of w550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.