900 resultados para bayesian inference
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
Given a sample from a fully specified parametric model, let Zn be a given finite-dimensional statistic - for example, an initial estimator or a set of sample moments. We propose to (re-)estimate the parameters of the model by maximizing the likelihood of Zn. We call this the maximum indirect likelihood (MIL) estimator. We also propose a computationally tractable Bayesian version of the estimator which we refer to as a Bayesian Indirect Likelihood (BIL) estimator. In most cases, the density of the statistic will be of unknown form, and we develop simulated versions of the MIL and BIL estimators. We show that the indirect likelihood estimators are consistent and asymptotically normally distributed, with the same asymptotic variance as that of the corresponding efficient two-step GMM estimator based on the same statistic. However, our likelihood-based estimators, by taking into account the full finite-sample distribution of the statistic, are higher order efficient relative to GMM-type estimators. Furthermore, in many cases they enjoy a bias reduction property similar to that of the indirect inference estimator. Monte Carlo results for a number of applications including dynamic and nonlinear panel data models, a structural auction model and two DSGE models show that the proposed estimators indeed have attractive finite sample properties.
Resumo:
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Resumo:
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.
Resumo:
This article extends existing discussion in literature on probabilistic inference and decision making with respect to continuous hypotheses that are prevalent in forensic toxicology. As a main aim, this research investigates the properties of a widely followed approach for quantifying the level of toxic substances in blood samples, and to compare this procedure with a Bayesian probabilistic approach. As an example, attention is confined to the presence of toxic substances, such as THC, in blood from car drivers. In this context, the interpretation of results from laboratory analyses needs to take into account legal requirements for establishing the 'presence' of target substances in blood. In a first part, the performance of the proposed Bayesian model for the estimation of an unknown parameter (here, the amount of a toxic substance) is illustrated and compared with the currently used method. The model is then used in a second part to approach-in a rational way-the decision component of the problem, that is judicial questions of the kind 'Is the quantity of THC measured in the blood over the legal threshold of 1.5 μg/l?'. This is pointed out through a practical example.
Resumo:
As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces.
Resumo:
The application of statistics to science is not a neutral act. Statistical tools have shaped and were also shaped by its objects. In the social sciences, statistical methods fundamentally changed research practice, making statistical inference its centerpiece. At the same time, textbook writers in the social sciences have transformed rivaling statistical systems into an apparently monolithic method that could be used mechanically. The idol of a universal method for scientific inference has been worshipped since the "inference revolution" of the 1950s. Because no such method has ever been found, surrogates have been created, most notably the quest for significant p values. This form of surrogate science fosters delusions and borderline cheating and has done much harm, creating, for one, a flood of irreproducible results. Proponents of the "Bayesian revolution" should be wary of chasing yet another chimera: an apparently universal inference procedure. A better path would be to promote both an understanding of the various devices in the "statistical toolbox" and informed judgment to select among these.