341 resultados para bax


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biventdcular (BV) pacing is evaluated as an alternative treatment for patients with dilated cardiomyppathy (both ischemic and non-ischemic) and end-stage heart failure. Colour tissue Doppler imaging using echocardiography allows noninvasive, quantitative assessment of radial motion in the long-axis with measurement of peak systolic velocity timing. The aim of the present study was to evaluate quantitatively, the systolic performance of the left ventricle and the resynchrenization of contraction (before vs after implantation). Patients and methods: 25 patients with dilated cardiomyopathy (11 ischemic), NYHA class III or IV, QRS duration >120 ms received a biventricular pacemaker. Routine 2D echo and colour tissue Doppler imaging were performed before and within 1 week following implantation. LVEF was assessed using the biplane Sampson's method.Peak systolic velocity (PSV) and time to PSV (TPV) were assessed in 4 regions (basal anterior, inferior, lateral and septal). By averaging the TPV from all 4 regions, a synchronization index was dedved from these measurements. Reaults: LVEF improved by 9±9% following pacing; 17 patients improved LVEF 5% or more. The change in PSV in the septal and lateral regions related significantly to the change in LVEF (r=0.74, r=0.62).The change in synchronization index before vs after pacing (as a measurement of REsynchronization) was related to the change in LVEF (y=120x+5.6, r=0.79, P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing interest in “medical gasses” for their antibacterial and anti-inflammatory properties. Hydrogen sulfide (H2S), a member of the family of gasotransmitters, is in fact increasingly being recognized as an important signaling molecule, but its precise role in the regulation of the inflammatory response is still not clear. For this reason, the aim of the first part of this thesis was to investigate the effects of H2S on the expression of pro-inflammatory cytokines, such as MCP-1, by using an in vitro model composed by both primary monocytes-derived macrophages cultures and the human monocytic cell line U937 infected with Mycoplasma fermentans, a well-known pro-inflammatory agent. In our experiments, we observed a marked increase in the production of pro-inflammatory cytokines in infected cells. In particular, MCP-1 was induced both at the RNA and at the protein level. To test the effects of H2S on infected cells, we treated the cells with two different H2S donors (NaHS and GYY4137), showing that both H2S treatments had anti-inflammatory effects in Mycoplasma-infected cells: the levels of MCP-1, both mRNA expression and protein production, were reduced. Our subsequent studies aimed at understanding the molecular mechanisms responsible for these effects, focused on two specific molecular pathways, both involved in inflammation: the NF-κB and the Nrf2 pathway. After treatment with pharmacological inhibitors, we demonstrated that Mycoplasma fermentans induces MCP-1 expression through the TLR-NF-κB pathway with the nuclear translocation of its subunits, while treatment with H2S completely blocked the nuclear translocation of NF-κB heterodimer p65/p50. Then, once infected cells were treated with H2S donors, we observed an increased protective effect of Nrf2 and also a decrease in ROS production. These results highlight the importance of H2S in reducing the inflammatory process caused by Mycoplasma fermentans. To this regard, it should be noted that several projects are currently ongoing to develop H2S-releasing compounds as candidate drugs capable of alleviating cell deterioration and to reduce the rate of decline in organ function. In the second part of this study, we investigated the role of Mycoplasma infection in cellular transformation. Infectious agents are involved in the etiology of many different cancers and a number of studies are still investigating the role of microbiota in tumor development. Mycoplasma has been associated with some human cancers, such as prostate cancer and non-Hodgkin’s lymphoma in HIV-seropositive people, and its potential causative role and molecular mechanisms involved are being actively investigated. To this regard, in vitro studies demonstrated that, upon infection, Mycoplasma suppresses the transcriptional activity of p53, key protein in the cancer suppression. As a consequence, infected cells were less susceptible to apoptosis and proliferated more than the uninfected cells. The mechanism(s) responsible for the Mycoplasma-induced inhibitory effect on p53 were not determined. Aim of the second part of this thesis was to better understand the tumorigenic role of the microorganism, by investigating more in details the effect(s) of Mycoplasma on p53 activity in an adenocarcinoma HCT116 cell line. Treatment of Mycoplasma-infected cells with 5FU or with Nutlin, two molecules that induce p53 activity, resulted in cellular proliferation comparable to untreated controls. These results suggested that Mycoplasma infection inhibited p53 activity. Immunoprecipitation of p53 with specific antibodies, and subsequent Gas Chromatography and Mass Spectroscopy (GC-MS) assays, allowed us to identify several Mycoplasma-specific proteins interacting with p53, such as DnaK, a prokaryotic heat shock protein and stress inducible chaperones. In cells transfected with DnaK we observed i) reduced p53 protein levels; ii) reduced activity and expression of p21, Bax and PUMA, iii) a marked increase in cells leaving G1 phase. Taken together, these data show an interaction between the human p53 and the Mycoplasma protein DnaK, with the consequent decreased p53 activity and decreased capability to respond to DNA damage and prevent cell proliferation. Our data indicate that Mycoplasma could be involved in cancer formation and the mechanism(s) has the potential to be a target for cancer diagnosis and treatment(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many parts of the world, plants are directly utilised for their medicinal properties. Traditional medicine from Pakistan, India and the Far East is well documented and its history is embedded in folklore. It has been documented that an aqueous extract of the desert shrub, Fagonia cretica, is a popular treatment for breast cancer in Pakistan. The administration of an aqueous extract of Fagonia cretica is reported effective at reducing tumour size and improving the quality of life of breast cancer patients, is well tolerated and does not exhibit adverse effects like vomiting, diarrhoea or alopecia which are common side effects of standard cytotoxic therapy. In the past, many pharmacologically active and chemotherapeutic compounds have been isolated from plants which subsequently have proven to be successful in clinical trials and been used as primary compounds in therapeutic regimes. Fagonia cretica has historical use as a treatment for breast cancer, yet there is little scientific evidence which shows chemotherapeutic potential towards breast tumours. Preparation and analysis of an aqueous extract of Fagonia cretica may reveal novel chemotherapeutic agents that can be used to effectively target cancer cells. An understanding of the mechanism of any activity may improve our understanding of cancer cell biology and reveal novel therapeutic targets. This thesis describes for the first time that an aqueous extract of Fagonia cretica shows potent in vitro cytotoxic activity towards breast cancer epithelial cell lines which was not seen towards normal mammary epithelial cells. Elucidation and characterisation of the cytotoxic mechanism was undertaken by analysing DNA damage, cell cycle status, apoptosis, metabolic state and expression of transcription factors and their targets. Finally, methods for the isolation and identification of active compound(s) were developed using various chromatographic techniques. An aqueous extract of Fagonia cretica was able to reduce cell viability significantly in two phenotypically different breast cancer cell lines (MCF-7 and MDA-MB-231). This activity was markedly reduced in normal mammary epithelial cells (HMEpC). Further investigation into the mode of action revealed that extract treatment induced cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cell lines. This coincided with the formation of DNA double stranded breaks and the DNA repair marker ?-H2AX. In MCF-7 cells, ATM/ATR activation resulted in increased p53 expression and of its transcriptional targets p21 and bax, suggesting a role for a p53-mediated response. Furthermore, inhibition of extract-induced p53 expression with siRNA reduced the cytotoxic effect against MCF-7 cells. Extract treatment was also associated with increased FOXO3a expression in MCF-7 and MDA-MB-231 cells. In the absence of functional p53, siRNA knockdown of extract-induced FOXO3a expression was completely abrogated, suggesting that FOXO3a plays a vital role in extract-induced cytotoxicity. Isolation and characterisation of the active compound(s) within the extract was attempted using liquid chromatography and mass spectrometry in conjunction with a cell viability assay. Multiple fractionations generated an active fraction that contained four major compounds as detected by mass spectrometry. However, none of these compounds were identified structurally or chemically due to constraints within the methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of C2C12 myotubes with a tumour-derived proteolysis-inducing factor (PIF) at concentrations between 1 and 10 nM was shown to stimulate the activity of the apoptotic initiator caspases-8 and -9 and the apoptotic effector caspases-2,-3 and -6. This increased caspase activity was attenuated in myotubes pretreated with 50 μM eicosapentaenoic acid (EPA). At least part of the increase in caspase activity may be related to the increased proteasome proteolytic activity, since a caspase-3 inhibitor completely attenuated the PIF-induced increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome. However, Western blot analysis showed that PIF induced an increase in expression of the active form of caspase-3, which was also attenuated by EPA. Further Western blot analysis showed PIF increased the cytosolic content of cytochrome c, as well as expression of the pro-apoptotic protein bax but not the antiapoptotic protein bcl-2, which were both attenuated by 50 μM EPA. Induction of apoptosis by PIF in murine myotubes was confirmed by an increase in free nucleasomes formation and increased DNA fragmentation evidenced by a nucleasomal ladder typical of apoptotic cells. This process was again inhibited by pre-incubation with EPA. These results suggest that in addition to activating the proteasome, PIF induces apoptosis in C2C12 myotubes, possibly through the common intermediate arachidonic acid. Both of these processes would contribute to the loss of skeletal muscle in cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

São comuns trabalhos científicos na área da Ciência da Informação que estudam a Gestão da Informação e do Conhecimento (GIC) em organizações de determinados contextos específicos. No entanto, são raros os trabalhos sobre a gestão da informação acadêmica em instituições de ensino superior (IES). O artigo apresenta uma pesquisa que tem por objetivo criar um modelo de gestão da informação para esse contexto. Após a descrição da pesquisa faz-se um recorte inicial da abrangência da gestão da informação acadêmica, no contexto da avaliação dos cursos de graduação. Baseando-se, nesse primeiro momento, apenas na forma como as avaliações são realizadas, no estudo da legislação vigente, e na experiência dos autores, foi feita uma revisão de literatura interdisciplinar contendo conceitos de três áreas: GIC, Gestão da Informação Acadêmica e tecnologias apropriadas. Dessa forma, o artigo mostra a importância dos trabalhos de gestão da informação acadêmica para melhoria dos cursos superiores no Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the third most common cancer worldwide. Various factors such as age, lifestyle and dietary patterns affect the risk of having CRC. Epidemiological studies showed a chemopreventive effect of soy consumption against CRC. However, which component(s) of soybean is associated with this reduced risk is not yet fully delineated. The objective of this research was to evaluate the anti-colon cancer potential of lunasin isolated from defatted soybean flour using in vitro and in vivo models of CRC. Lunasin was isolated from defatted soybean flour by a combination of different chromatographic and ultrafiltration techniques. The anti-colon cancer potential of lunasin was determined using different human colon cancer cell lines in vitro and a CRC liver metastasis model in vivo. Lunasin caused cytotoxicity to different human colon cancer cells with an IC50 value of 13.0, 21.6, 26.3 and 61.7 µM for KM12L4, RKO, HCT-116 and HT-29 human colon cancer cells, respectively. This cytotoxicity correlated with the expression of the α5 integrin on human colon cancer cells with a correlation coefficient of 0.78. The mechanism involved in the cytotoxic effect of lunasin was through cell cycle arrest and induction of the mitochondrial pathway of apoptosis. In KM12L4 human colon cancer cells, lunasin caused a G2/M phase arrest increasing the percentage of cells at G2/M phase from 12% (PBS-treated) to 24% (treated with 10 µM lunasin). This arrest was attributed to the capability of lunasin to increase the expression of cyclin dependent kinase inhibitors p21 and p27. At 10 µM, lunasin increased the expression of p21 and p27 in KM12L4 colon cancer cells by 2.2- and 2.3-fold, respectively. Flow cytometric analysis showed that lunasin at 10 µM increased the percentage of cells undergoing apoptosis from 13.6% to 24.7%. This is further supported by fluorescence microscopic analysis of KM12L4 cells treated with 10 µM lunasin showing chromatin condensation and DNA fragmentation. The mechanism involved is through modification of proteins involved in the mitochondrial pathway of apoptosis in KM12L4 cells as 10 µM lunasin reduced the expression of the anti-apoptotic Bcl-2 protein by 2-fold and increased the expression of the pro-apoptotic proteins Bax, cytochrome c and nuclear clusterin by 2.2-, 2.1- and 2.3- fold, respectively. This led to increased expression and activity of the executioner of apoptosis, caspase-3 by 1.8- and 2.3-fold, respectively. This pro-apoptotic property of lunasin can be attributed to its capability to internalize into the cytoplasm and nucleus of colon cancer cells 24 h and 72 h after treatment, respectively. In addition, lunasin mediated metastasis of colon cancer cells in vitro by inhibiting the focal adhesion kinase activation thereby reducing expression of extracellular regulated kinase and nuclear factor kappa B and finally inhibiting migration of colon cancer cells. In KM12L4 colon cancer cells, 10 µM lunasin resulted in the reduction of phosphorylation of focal adhesion kinase and extracellular regulated kinase by 2.5-fold, resulting in the reduced nuclear translocation of p50 and p65 NF-κB subunits by 3.8- and 1.4-fold, respectively. In an in vivo model of CRC liver metastasis, daily intraperitoneal administration of lunasin at 4 mg/kg body weight resulted in the inhibition of KM12L4 liver metastasis as shown by the reduction of the number of liver metastases from 28 (PBS-treated) to 14 (lunasin-treated, P = 0.047) and reduction in tumor burden as measured by liver weight/body weight from 0.13 (PBS-treated) to 0.10 (lunasin-treated, P = 0.039). Moreover, lunasin potentiated the anti-metastatic effect of the chemotherapeutic drug oxaliplatin given at 5 mg/kg body weight twice per week. Lunasin and oxaliplatin combination resulted in a more potent inhibition of outgrowth of KM12L4 cell metastases to the liver reducing the number of liver metastases by 6-fold and reducing the tumor burden in the liver by 3-fold when compared to PBS-treated group. This can be attributed by the capability of lunasin and oxaliplatin to reduce expression of proliferating cell nuclear antigen in liver-tumor tissue as measured by immunohistochemical staining. The results of this research for the first time demonstrated the anti-colon cancer potential of lunasin isolated from defatted soybean flour which might contribute to the chemopreventive effect of soybean in CRC as seen in different epidemiological studies. In conclusion, lunasin isolated from defatted soybean flour mediated colon carcinogenesis by inducing apoptosis and preventing outgrowth of metastasis. We suggest that the results of this research serve as a basis for further study on the chemopreventive effect of lunasin against CRC and a possible adjuvant role for lunasin in therapy of patients with metastatic CRC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.