865 resultados para battery-powered


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Access to improved potable water sources is recognized as one of the key factors in improving health and alleviating global poverty. In recently years, substantial investments have been made internationally in potable water infrastructure projects, allowing 2.3 billion people to gain access to potable water from 1990-2012. One such project was planned and installed in Solla, Togo, a rural village in the northern part of the country, from 2010-2012. Ethnographic studies revealed that, while the community has access to potable water, an estimated 45% of the village’s 1500 residents still rely on unprotected sources for drinking and cooking. Additionally, inequality in system use based on income level was revealed, with the higher income groups accessing the system more regularly than lower income groups. Cost, as well as the availability of cheaper sources, was identified as the main deterrent from using the new water distribution system. A new water-pricing scheme is investigated here with the intention of making the system accessible to a greater percentage of the population. Since 2012, a village-level water committee has been responsible for operations and maintenance (O&M), fulfilling the community management model that is recommended by many development theorists in order to create sustainable projects. The water committee received post-construction support, mostly in the form of technical support during system breakdowns, from the Togolese Ministry of Water and Sanitation (MWSVH). While this support has been valuable in maintaining a functional water supply system in Solla, the water committee still has managerial challenges, particularly with billing and fee collection. As a result, the water committee has only received 2% - 25% of the fees owed at each private connection and public tap stand, making their finances vulnerable when future repairs and capital replacements are necessary. A new management structure is proposed by the MWSVH that will pay utilities workers a wage and will hire an accountant in order to improve the local management and increase revenue. This proposal is analyzed under the new water pricing schemes that are presented. Initially, the rural water supply system was powered by a diesel-generator, but in 2013, a solar photo-voltaic power supply was installed. The new system proved a fiscal improvement for the village water committee, since it drastically reduced their annual O&M costs. However, the new system pumps a smaller volume of water on a daily basis and did not meet the community’s water needs during the dry season of 2014. A hydraulic network model was developed to investigate the system’s reliability under diesel-generator (DGPS) and solar photovoltaic (PVPS) power supplies. Additionally, a new system layout is proposed for the PVPS that allows pumping directly into the distribution line, circumventing the high head associated with pumping solely to the storage tank. It was determined that this new layout would allow for a greater volume of water to be provided to the demand points over the course of a day, meeting a greater fraction of the demand than with the current layout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost electrophoretic deposition (EPD) process was successfully used for liquid metal thin film deposition with a high depositing rate of 0.6 µ/min. Furthermore, silicon nano-powder and liquid metal were then simultaneously deposited as the negative electrode of lithium-ion battery by a technology called co-EPD. The liquid metal was hoping to act as the matrix for silicon particles during lithium ion insertion and distraction. Half-cell testing was performed using as prepared co-EPD sample. An initial discharge capacity of 1500 mAh/g was reported for nano-silicon and galinstan electrode, although the capacity fading issue of these samples was also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg-1). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg-1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg-1 at 0.17C and cycling stability of 130 mAhg-1 up to 50 cycles at 1.7C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is about the simulation of malfunctions in an onshore wind energy conversion system powered by a doubly fed induction generator with a two-level power converter, handling only the slip power. These malfunctions are analysed in order to be able to investigate the impact in the wind power system behaviour by comparison before, during and after the malfunctions. The malfunctions considered in the simulation includes are localized in the DC-link of the converter and in the phase change in rectifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on technology state of the art for the charge/discharge of electric energy storage supported by vanadium redox flow battery linked to the electric grid. Properties of vanadium, the main configuration and the reaction of charge/discharge of a vanadium redox flow battery are addressed. The vanadium redox flow battery has the highest cell voltage among the other redox flow battery, implying higher power and energy density which favours application at power plants. This electric energy storage is viewed as a promising contribution to be integrated in power system due to a reasonably bulky size and to successful applications currently allowing storage of energy at power plants or at electrical grids. For instances, allowing storage of energy as an economic improvement providing spin reserve to avoid penalty for imbalances between the energy delivered and energy contracted at closing of electricity market or as an economic improvement to diminish the cost of electricity usage of a consumer. The vanadium redox flow battery has the advantages of scalability customized to meet requirements for power and energy capacity and of excellent combination of energy efficiency, capital cost and life cycle costs compared with other technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Doctoral Thesis aims to study and develop advanced and high-efficient battery chargers for full electric and plug-in electric cars. The document is strictly industry-oriented and relies on automotive standards and regulations. In the first part a general overview about wireless power transfer battery chargers (WPTBCs) and a deep investigation about international standards are carried out. Then, due to the highly increasing attention given to WPTBCs by the automotive industry and considering the need of minimizing weight, size and number of components this work focuses on those architectures that realize a single stage for on-board power conversion avoiding the implementation of the DC/DC converter upstream the battery. Based on the results of the state-of-the-art, the following sections focus on two stages of the architecture: the resonant tank and the primary DC/AC inverter. To reach the maximum transfer efficiency while minimizing weight and size of the vehicle assembly a coordinated system level design procedure for resonant tank along with an innovative control algorithm for the DC/AC primary inverter is proposed. The presented solutions are generalized and adapted for the best trade-off topologies of compensation networks: Series-Series and Series-Parallel. To assess the effectiveness of the above-mentioned objectives, validation and testing are performed through a simulation environment, while experimental test benches are carried out by the collaboration of Delft University of Technology (TU Delft).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the different stages of design, implementation, and validation procedures for an interleaved DC-DC boost converter intended for the 2022 Futura, a fuel cell-powered racing catamaran developed by the UniBoAT team. The main goal of the entire design has been the significant reduction of the weight of the converter by removing heat sinks and reducing component size while increasing its efficiency by adopting high-end power switches and the interleaved architecture operated with a synchronous control strategy. The obtained converter has been integrated into the structure containing the fuel cell stack obtaining a fully integrated system. The realized device has been based on an interleaved architecture with six phases controlled digitally through the average current mode control. The design has been validated through simulations carried out using the software LT-Spice, whereas experimental validations have been performed by means of laboratory bench tests and on-field tests. Detailed thermal and efficiency analyses are provided with the bench tests under the two synchronous and non-synchronous operating modes and with the adoption of the phase shedding technique. The prototype implementation and its performance in real operating conditions are also discussed. Eventually, it is underlined as the designed converter can be used in other applications requiring a voltage-controlled boost converter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathological mechanisms underlying cognitive dysfunction in multiple sclerosis (MS) are not yet fully understood and, in addition to demyelinating lesions and gray-matter atrophy, subclinical disease activity may play a role. To evaluate the contribution of asymptomatic gadolinium-enhancing lesions to cognitive dysfunction along with gray-matter damage and callosal atrophy in relapsing-remitting MS (RRMS) patients. Forty-two treated RRMS and 30 controls were evaluated. MRI (3T) variables of interest were brain white-matter and cortical lesion load, cortical and deep gray-matter volumes, corpus callosum volume and presence of gadolinium-enhancing lesions. Outcome variables included EDSS, MS Functional Composite (MSFC) subtests and the Brief Repeatable Battery of Neuropsychological tests. Cognitive dysfunction was classified as deficits in two or more cognitive subtests. Multivariate regression analyses assessed the contribution of MRI metrics to outcomes. Patients with cognitive impairment (45.2%) had more cortical lesions and lower gray-matter and callosal volumes. Patients with subclinical MRI activity (15%) had worse cognitive performance. Clinical disability on MSFC was mainly associated with putaminal atrophy. The main independent predictors for cognitive deficits were high burden of cortical lesions and number of gadolinium-enhancing lesions. Cognitive dysfunction was especially related to high burden of cortical lesions and subclinical disease activity. Cognitive studies in MS should look over subclinical disease activity as a potential contributor to cognitive impairment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attention deficit hyperactivity disorder (ADHD) is characterized by a persistent pattern of inattention and/or hyperactivity/impulsivity. The aim of this research was to contribute more precisely to the diagnosis of ADHD, to propose a battery of neuropsychological assessment and to analyze the contribution of each test. We studied 10 matched pairs of children with ADHD and normal controls (7 to 11 years). Inclusion criteria were: presence of ADHD typical behavior, positive diagnosis of ADHD based on DSM-IV, normal IQ, normal neurological examination and parental consent. We used extensive neuropsychological battery. The results showed differential sensitivity for detection of attentional problems in children with ADHD, although most tests did not reach statistical significance. The item, errors, of WCST revealed statistically significant difference between the two groups: ADHD performance was inferior to controls . In conclusion the neuropsychological assessment battery used in this research contributed to the diagnosis of ADHD.