999 resultados para basalt source
Resumo:
Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.
Resumo:
When stimulated by a point source of cyclic AMP, a starved amoeba of Dictyostelium discoideum responds by putting out a hollow balloon-like membrane extension followed by a pseudopod. The effect of the stimulus is to influence the position where either of these protrusions is made on the cell rather than to cause them to be made. Because the pseudopod forms perpendicular to the cell surface, its location is a measure of the precision with which the cell can locate the cAMP source. Cells beyond 1 h of starvation respond non-randomly with a precision that improves steadily thereafter. A cell that is starved for 1-2 h can locate the source accurately 43% of the time; and if starved for 6-7 h, 87% of the time. The response always has a high scatter; population-level heterogeneity reflects stochasticity in single cell behaviour. From the angular distribution of the response its maximum information content is estimated to be 2-3 bits. In summary, we quantitatively demonstrate the stochastic nature of the directional response and the increase in its accuracy over time.
Resumo:
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.
Resumo:
The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.
Resumo:
We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.
Resumo:
The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM during overmodulation from a space vector point of view. The average voltage vector produced by TCPWM during overmodulation is studied in the stationary (a-b) reference frame. This is compared and contrasted with the average voltage vector corresponding to the well-known standard two-zone algorithm for space vector modulated inverters. It is shown that the two-zone overmodulation algorithm itself can be derived from the variation of average voltage vector with TCPWM. The average voltage vector is further studied in a synchronously revolving (d-q) reference frame. The RMS value of low-order voltage ripple can be estimated, and can be used to compare harmonic distortion due to different PWM methods during overmodulation. The measured values of the total harmonic distortion (THD) in the line currents are presented at various fundamental frequencies. The relative values of measured current THD pertaining to different PWM methods tally with those of analytically evaluated RMS voltage ripple.
Resumo:
Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.
Resumo:
Many of the conducting polymers though having good material property are not solution processable. Hence an alternate method of fabrication of film by pulsed laser deposition, was explored in this work. PDTCPA, a donor-acceptor-donor type of polymer having absorption from 900 nm to 300 nm was deposited by both UV and IR laser to understand the effect of deposition parameters on the film quality. It was observed that the laser ablation of PDTCPA doesn't alter its chemical structure hence retaining the chemical integrity of the polymer. Microscopic studies of the ablated film shows that the IR laser ablated films were particulate in nature while UV laser ablated films are deposited as smooth continuous layer. The morphology of the film influences its electrical characteristics as current-voltage characteristic of these films shows that films deposited by UV laser are p rectifying while those by IR laser are more of resistor in nature.
Resumo:
The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.
Resumo:
A transform approach to network coding was in-troduced by Bavirisetti et al. (arXiv:1103.3882v3 [cs.IT]) as a tool to view wireline networks with delays as k-instantaneous networks (for some large k). When the local encoding kernels (LEKs) of the network are varied with every time block of length k >1, the network is said to use block time varying LEKs. In this work, we propose a Precoding Based Network Alignment (PBNA) scheme based on transform approach and block time varying LEKs for three-source three-destination multiple unicast network with delays (3-S3-D MUN-D). In a recent work, Menget al. (arXiv:1202.3405v1 [cs.IT]) reduced the infinite set of sufficient conditions for feasibility of PBNA in a three-source three-destination instantaneous multiple unicast network as given by Das et al. (arXiv:1008.0235v1 [cs.IT]) to a finite set and also showed that the conditions are necessary. We show that the conditions of Meng et al. are also necessary and sufficient conditions for feasibility of PBNA based on transform approach and block time varying LEKs for 3-S3-D MUN-D.
Resumo:
We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.
Resumo:
A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.
Resumo:
This paper addresses the problem of localizing the sources of contaminants spread in the environment, and mapping the boundary of the affected region using an innovative swarm intelligence based technique. Unlike most work in this area the algorithm is capable of localizing multiple sources simultaneously while also mapping the boundary of the contaminant spread. At the same time the algorithm is suitable for implementation using a mobile robotic sensor network. Two types of agents, called the source localization agents (or S-agents) and boundary mapping agents (or B-agents) are used for this purpose. The paper uses the basic glowworm swarm optimization (GSO) algorithm, which has been used only for multiple signal source localization, and modifies it considerably to make it suitable for both these tasks. This requires the definition of new behaviour patterns for the agents based on their terminal performance as well as interactions between them that helps the swarm to split into subgroups easily and identify contaminant sources as well as spread along the boundary to map its full length. Simulations results are given to demonstrate the efficacy of the algorithm.
Resumo:
Voltage source inverters are an integral part of renewable power sources and smart grid systems. Computationally efficient and fairly accurate models for the voltage source inverter are required to carry out extensive simulation studies on complex power networks. Accuracy requires that the effect of dead-time be incorporated in the inverter model. The dead-time is essentially a short delay introduced between the gating pulses to the complementary switches in an inverter leg for the safety of power devices. As the modern voltage source inverters switch at fairly high frequencies, the dead-time significantly influences the output fundamental voltage. Dead-time also causes low-frequency harmonic distortion and is hence important from a power quality perspective. This paper studies the dead-time effect in a synchronous dq reference frame, since dynamic studies and controller design are typically carried out in this frame of reference. For the sake of computational efficiency, average models are derived, incorporating the dead-time effect, in both RYB and dq reference frames. The average models are shown to consume less computation time than their corresponding switching models, the accuracies of the models being comparable. The proposed average synchronous reference frame model, including effect of dead-time, is validated through experimental results.
Resumo:
The formation and growth of continental crust in the Archean have been evaluated through models of subduction-accretion and mantle plume. The Nilgiri Block in southern India exposes exhumed Neoarchean lower crust, uplifted to heights of 2500 m above sea level along the north western margin of the Peninsula. Major lithologies in this block include charnockite with or without garnet, anorthosite-gabbro suite, pyroxenite, amphibolite and hornblende-biotite gneiss (TTG). All these rock types are closely associated as an arc magmatic suite, with diffuse boundaries and coeval nature. The charnockite and hornblende-biotite gneisses (TTG) show SiO2 content varying from 64 to 73 wt.%. The hornblende-biotite gneisses (TTG) are high-Al type with Al2O3 >15 wt.% whereas the charnockites show Al2O3 <15 wt.%. The composition of charnockite is mainly magnesian and calcic to calc-alkaline. The mafic-ultramafic rocks show composition close to that of tholeiitic series. The low values of K(2)o (<3 wt.%), (K/Rb)/K2O (<500), Zr/Ti, and trace element ratios like (La/Yb)n/(Sr/Y), (Y/Nb), (Y + Nb)/Rb, (Y+Ta)/Rb, Yb/Ta indicate a volcanic arc signature for these rocks. The geochemical signature is consistent with arc magmatic rocks generated through oceanic plate subduction. The primitive mantle normalized trace element patterns of these rocks display enrichment in large ion lithophile elements (LILE) and comparable high field strength elements (HFSE) in charnockite and hornblende-biotite gneisses (TTG) consistent with subduction-related origin. Primitive mantle normalized REE pattern displays an enrichment in LREE in the chamockite and hornblende-biotite gneisses (TTG) as compared to a flat pattern for the mafic rocks. The chondrite normalized REE patterns of zircons of all the rock types reveal cores with high HREE formed at ca. 2700 Ma and rims with low HREE formed at 2500-2450 Ma. Log-transformed La/Th-Nb/Th-Sm/Th-Yb/Th discrimination diagram for the mafic and ultramafic rocks from Nilgiri displays a transition from mid-oceanic ridge basalt (MORB) to island arc basalt (IAB) suggesting a MORB source. The U-Pb zircon data from the charnockites, mafic granulites and hornblende-biotite gneisses (TTG) presented in our study show that the magma generation during subduction and accretion events in this block occurred at 2700-2500 Ma. Together with the recent report on Neoarchean supra-subduction zone ophiolite suite at its southern margin, the Nilgiri Block provides one of the best examples for continental growth through vertical stacking and lateral accretion in a subduction environment during the Neoarchean. (c) 2014 Elsevier B.V. All rights reserved.