975 resultados para auditory-motor interaction
Resumo:
In Angus v Conelius [2007] QCA 190 the Queensland Court of Appeal concluded that the obligations under the Motor Accident Insurance Act 1994 (Qld), and in particular s 45 of the Act (duty of claimant to cooperate with insurer), continue beyond the commencement of court proceedings
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.
Resumo:
This paper quantifies the mixing and dispersion from an outboard motor by field experiments in a small subtropical waterway. Organic dye was used as a surrogate for exhaust emissions and was mixed with uncontaminated creek water before being dispersed into the creek. Dye concentrations were measured with an array of concentration probes stationed in the creek. The data were then processed and fitted with a power law function. The corresponding dispersion constants agreed well with the literature. However, the amplitude was lower than the IMO equation but higher than the correlation from laboratory tests. Results for dye concentration intermittency (presence of dye) are presented for the first time from such field measurements and show significant mixing in-homogeneity.
Resumo:
Drawing on three case studies of work in the fields of participatory design, interaction design and electronic arts, we reflect on the implications of these studies for haptic interface research. We propose three themes: gestural; emergent; and expressive; as signposts for a program of research into haptic interaction that could point the way towards novel approaches to haptic interaction and move us from optic to haptic ways of seeing.
Resumo:
There are many variables to consider in the design of an electric motor. However, meeting the performance requirements for an electric vehicle drive may cause a designer to loose focus on its typical operation and hence fail to optimise the motor in the region where it processes the most power. This paper investigates operating requirements of electric vehicle motor drives using the University concept vehicle as an example. The paper outlines a methodology for determining primary operating region of a vehicle drive. The methodology is applied to standard driving cycles that are commonly used in the design and testing of vehicles.
Resumo:
Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.
Resumo:
An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.
Resumo:
Executive Summary This project has commenced an exploration of learning and information experiences in the QUT Cube. Understanding learning in this environment has the potential to inform current implementations and future project development. In this report, we present early findings from the first phase of an investigation into what makes learning possible in the context of a giant interactive multi-media display such as the QUT Cube, which is an award-winning configuration that hosts several projects.
Resumo:
With this special issue, we draw attention to the growing and diverse field of HCI researchers exploring the interstices of food, technology and everyday practices. This special issue builds on the CHI workshop of the same name (Comber et al., 2012a), where we brought together the community of researchers that take food as a point from which to understand people and design technology. The workshop aimed to ‘to attend to the practical and theoretical difficulties in designing for human–food interactions in everyday life’ identifying four thematic areas of food practices – health and wellbeing; sustainability; food experiences; and alternative food cultures. These practical and theoretical difficulties are evident in the papers that we present here, though the distinction between our four themes, premised by complexities of food practices, is a little less evident. Thus, in the papers that follow we explore how the social, technological, cultural and methodological intertwine in the field of human–food interaction.
Resumo:
Portable water-filled barriers (PWFB) are roadside structures used to separate moving traffic from work-zones. Numerical PWFB modelling is preferred in the design stages prior to actual testing. This paper aims to study the fluid-structure interaction of PWFB under vehicular impact using several methods. The strategy to treat water as non-structural mass was proposed and the errors were investigated. It was found that water can be treated with the FEA-NSM model for velocities higher than 80kmh-1. However, full SPH/FEA model is still the best treatment for water and necessary for lower impact velocities. The findings in this paper can be used as guidelines for modelling and designing PWFB.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.
Resumo:
Bicyclists are among the most vulnerable of road users, with high fatal crash rates. Although visibility aids have been widely advocated to help prevent bicycle-vehicle conflicts, to date no study has investigated, among crash-involved cyclists, the kind of visibility aids they were using at the time of the crash. This study undertook a detailed investigation of visibility factors involved in bicyclist-motor-vehicle crashes. We surveyed 184 bicyclists (predominantly from Australia via internet cycling forums) who had been involved in motor vehicle collisions regarding the perceived cause of the collision, ambient weather and general visibility, as well as the clothing and bicycle lights used by the bicyclist. Over a third of the crashes occurred in low light levels (dawn, dusk or night-time), which is disproportionate given that only a small proportion of bicyclists typically ride at these times. Importantly, 19% of these bicyclists reported not using bicycle lights at the time of the crash, and only 34% were wearing reflective clothing. Only two participants (of 184) nominated bicyclist visibility as the cause of the crash: 61% attributed the crash to driver inattention. These findings demonstrate that crash-involved bicyclists tend to under-rate and under-utilise visibility aids as a means of improving their safety.
Resumo:
The interaction of Au particles with few layer graphene is of interest for the formation of the next generation of sensing devices(1). In this paper we investigate the coupling of single gold nanoparticles to a graphene sheet, and multiple gold nanoparticles with a graphene sheet using COMSOL Multiphysics. By using these simulations we are able to determine the electric field strength and associated hot-spots for various gold nanoparticle-graphene systems. The Au nanoparticles were modelled as 8 nm diameter spheres on 1.5 nm thick (5 layers) graphene, with properties of graphene obtained from the refractive index data of Weber(2) and the Au refractive index data from Palik(3). The field was incident along the plane of the sheet with polarisation tested for both s and p. The study showed strong localised interaction between the Au and graphene with limited spread; however the double particle case where the graphene sheet separated two Au nanoparticles showed distinct interaction between the particles and graphene. An offset was introduced (up to 4 nm) resulting in much reduced coupling between the opposed particles as the distance apart increased. Findings currently suggest that the graphene layer has limited interaction with incident fields with a single particle present whilst reducing the coupling region to a very fine area when opposing particles are involved. It is hoped that the results of this research will provide insight into graphene-plasmon interactions and spur the development of the next generation of sensing devices.