858 resultados para auditory evoked potentials
Resumo:
The factors influencing the stream segregation of discrete tones and the perceived continuity of discrete tones as continuing through an interrupting masker are well understood as separate phenomena. Two experiments tested whether perceived continuity can influence the build-up of stream segregation by manipulating the perception of continuity during an induction sequence and measuring streaming in a subsequent test sequence comprising three triplets of low and high frequency tones (LHL-…). For experiment 1, a 1.2-s standard induction sequence comprising six 100-ms L-tones strongly promoted segregation, whereas a single extended L-inducer (1.1 s plus 100-ms silence) did not. Segregation was similar to that following the single extended inducer when perceived continuity was evoked by inserting noise bursts between the individual tones. Reported segregation increased when the noise level was reduced such that perceived continuity no longer occurred. Experiment 2 presented a 1.3-s continuous inducer created by bridging the 100-ms silence between an extended L-inducer and the first test-sequence tone. This configuration strongly promoted segregation. Segregation was also increased by filling the silence after the extended inducer with noise, such that it was perceived like a bridging inducer. Like physical continuity, perceived continuity can promote or reduce test-sequence streaming, depending on stimulus context.
Resumo:
The tendency to hear a sequence of alternating low (L) and high (H) frequency tones as two streams can be increased by a preceding induction sequence, even one composed only of same-frequency tones. Four experiments used such an induction sequence (10 identical L tones) to promote segregation in a shorter test sequence comprising L and H tones. Previous studies have shown that the build-up of stream segregation is usually reduced greatly when a sudden change in acoustic properties distinguishes all of the induction tones from their test-sequence counterparts. Experiment 1 showed that a single deviant tone, created by altering the final inducer (in frequency, level, duration, or replacement with silence) reduced reported segregation, often substantially. Experiment 2 partially replicated this finding, using changes in temporal discrimination as a measure of streaming. Experiments 3 and 4 varied the size of a frequency change applied to the deviant tone; the extent of resetting varied with size only gradually. The results suggest that resetting begins to occur once the change is large enough to be noticeable. Since the prior inducers always remained unaltered in the deviant-tone conditions, it is proposed that a single change actively resets the build-up evoked by the induction sequence.
Resumo:
The possibility that developmental dyslexia results from low-level sensory processing deficits has received renewed interest in recent years. Opponents of such sensory-based explanations argue that dyslexia arises primarily from phonological impairments. However, many behavioural correlates of dyslexia cannot be explained sufficiently by cognitive-level accounts and there is anatomical, psychometric and physiological evidence of sensory deficits in the dyslexic population. This thesis aims to determine whether the low-level (pre-attentive) processing of simple auditory stimuli is disrupted in compensated adult dyslexics. Using psychometric and neurophysiological measures, the nature of auditory processing abnormalities is investigated. Group comparisons are supported by analysis of individual data in order to address the issue of heterogeneity in dyslexia. The participant pool consisted of seven compensated dyslexic adults and seven age and IQ matched controls. The dyslexic group were impaired, relative to the control group, on measures of literacy, phonological awareness, working memory and processing speed. Magnetoencephalographic recordings were conducted during processing of simple, non-speech, auditory stimuli. Results confirm that low-level auditory processing deficits are present in compensated dyslexic adults. The amplitude of N1m responses to tone pair stimuli were reduced in the dyslexic group. However, there was no evidence that manipulating either the silent interval or the frequency separation between the tones had a greater detrimental effect on dyslexic participants specifically. Abnormal MMNm responses were recorded in response to frequency deviant stimuli in the dyslexic group. In addition, complete stimulus omissions, which evoked MMNm responses in all control participants, failed to elicit significant MMNm responses in all but one of the dyslexic individuals. The data indicate both a deficit of frequency resolution at a local level of auditory processing and a higher-level deficit relating to the grouping of auditory stimuli, relevant for auditory scene analysis. Implications and directions for future research are outlined.
Resumo:
The Visually Evoked Subcortical Potential, a far-field signal, was originally defined to flash stimulation as a triphasic positive-negative-positive complex with mean latencies of P21 N26.2 P33.6 (Harding and Rubinstein 1980). Inconsistent with its subcortical source however, the signal was found to be tightly localised to the mastoid. This thesis re-examines the earlier protocols using flash stimulation and with auditory masking establishes by topographic studies that the VESP has a widespread scalp distribution, consistent with a far-field source of the signal, and is not a volume-conducted electroretinogram (ERG). Furthermore, mastoid localisation indicates auditory contamination from the click, on discharge of the photostimulator. The use of flash stimulation could not precisely identify the origin of the response. Possible sources of the VESP are the lateral geniculate body (LGB) and the superior colliculus. The LGB received 80% of the nerve fibres from the retina, and responds to high contrast achromatic stimulation in the form of drifting gratings of high spatial frequencies. At low spatial frequencies, it is more sensitive to colour. The superior colliculus is insensitive to colour and suppressed by contrast and responds to transitory rapid movements, and receives about 20% of the optic nerve fibres. A pattern VESP was obtained to black and white checks as a P23.5 N29.2 P34 complex in 93% of normal subjects at an optimal check size of 12'. It was also present as a P23.0 N28.29 P32.23 complex to red and green luminance balanced checks at 2o check size in 73% of subjects. These results were not volume-conducted pattern electroretinogram responses. These findings are consistent with the spatial frequency properties of the lateral geniculate body which is the considered source of the signal. With further work, the VESP may supplement electrodiagnosis of post-chiasmal lesions.
Resumo:
The topographical distribution of the early components of the flash visual evoked response (VER) were investigated using a twenty channel brain mapping system. Thirty subjects, ranging in age from 21 to 84 years, had flash VERs recorded using the standard 10-20 electrode system to a balanced non-cephalic reference. The subjects were divided into three age groups: a young group, a middle group and an older group. The P2 component (positive component around 100-120 msec) of the flash VER was recorded consistently over the occipital region throughout the age range, as was a frontal negative component (N120) of about the same latency. Only the young age group had this single negative component on the frontage channels, whilst the middle age group showed an additional negative component at around 75 msec (N75). Neither group had a recordable P1 component (positive component around 60-75 msec) over the occipital region. The older age group showed both P1 and P2 components over the occipital region with the distribution of the P1 component being more widespread anteriorly. The frontal channels showed both the negative N75 and the later N120 components. The frontal negative components were shown not to be related to the electroretinogram or the balanced non-cephalic reference, but were affected by the type of stimulation. Responses recorded to both pattern reversal and onset/offset stimulation did not show the frontal negative potentials seen with flash stimulation. It was shown that the P1 component is more readily recordable in the elderly and is preceded during middle age by the development of a frontal negative component at around the same latency. The changing morphology of the negative activity in the frontal region across the age range suggests that the use of an Fz reference would produce an artificial P1 component in the middle age group and an enhancement of this component in the elderly, as well as enhance the P2 component in all ages.
Resumo:
Thirteen experiments investigated the dynamics of stream segregation. Experiments 1-6b used a similar method, where a same-frequency induction sequence (usually 10 repetitions of an identical pure tone) promoted segregation in a subsequent, briefer test sequence (of alternating low- and high-frequency tones). Experiments 1-2 measured streaming using a direct report of perception and a temporal-discrimination task, respectively. Creating a single deviant by altering the final inducer (e.g. in level or replacement with silence) reduced segregation, often substantially. As the prior inducers remained unaltered, it is proposed that the single change actively reset build-up. The extent of resetting varied gradually with the size of a frequency change, once noticeable (experiments 3a-3b). By manipulating the serial position of a change, experiments 4a-4b demonstrated that resetting only occurred when the final inducer was replaced with silence, as build-up is very rapid during a same-frequency induction sequence. Therefore, the observed resetting cannot be explained by fewer inducers being presented. Experiment 5 showed that resetting caused by a single deviant did not increase when prior inducers were made unpredictable in frequency (four-semitone range). Experiments 6a-6b demonstrated that actual and perceived continuity have a similar effect on subsequent streaming judgements promoting either integration or segregation, depending on listening context. Experiment 7 found that same-frequency inducers were considerably more effective at promoting segregation than an alternating-frequency inducer, and that a trend for deviant-tone resetting was only apparent for the same-frequency case. Using temporal-order judgments, experiments 8-9 demonstrated the stream segregation of pure-tone-like percepts, evoked by sudden changes in amplitude or interaural time difference for individual components of a complex tone, Active resetting was observed when a deviant was inserted into a sequence of these percepts (Experiment 10). Overall, these experiments offer new insight into the segregation-promotIng effect of induction sequences, and the factors which can reset this effect.
Resumo:
This study sought to explore whether the so-called 'paradoxical' task-related increases in the alpha bandwidth of the human electroencephalogram result from increases in evoked (phase locked), as opposed to induced (non-phase locked), activity. The electroencephalograms of 18 participants were recorded while they engaged in both auditory sensory-intake tasks (listening to randomly generated 'tunes') and internally directed attention tasks (imagining the same randomly generated tunes) matched for auditory input. Measures of evoked (phase locked) and induced (non-phase locked) activity were compared between tasks. Increases in induced alpha power were found during internal attention. No experimental effects were observed for evoked activity. These results are not entirely consistent with proposals that 'paradoxical' alpha indexes the evoked inhibition of task irrelevant processing.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Event-related potentials (ERP) have been proposed to improve the differential diagnosis of non-responsive patients. We investigated the potential of the P300 as a reliable marker of conscious processing in patients with locked-in syndrome (LIS). Eleven chronic LIS patients and 10 healthy subjects (HS) listened to a complex-tone auditory oddball paradigm, first in a passive condition (listen to the sounds) and then in an active condition (counting the deviant tones). Seven out of nine HS displayed a P300 waveform in the passive condition and all in the active condition. HS showed statistically significant changes in peak and area amplitude between conditions. Three out of seven LIS patients showed the P3 waveform in the passive condition and five of seven in the active condition. No changes in peak amplitude and only a significant difference at one electrode in area amplitude were observed in this group between conditions. We conclude that, in spite of keeping full consciousness and intact or nearly intact cortical functions, compared to HS, LIS patients present less reliable results when testing with ERP, specifically in the passive condition. We thus strongly recommend applying ERP paradigms in an active condition when evaluating consciousness in non-responsive patients.
Resumo:
It is well known that self-generated stimuli are processed differently from externally generated stimuli. For example, many people have noticed since childhood that it is very difficult to make a self-tickling. In the auditory domain, self-generated sounds elicit smaller brain responses as compared to externally generated sounds, known as the sensory attenuation (SA) effect. SA is manifested in reduced amplitudes of evoked responses as measured through MEEG, decreased firing rates of neurons and a lower level of perceived loudness for self-generated sounds. The predominant explanation for SA is based on the idea that self-generated stimuli are predicted (e.g., the forward model account). It is the nature of their predictability that is crucial for SA. On the contrary, the sensory gating account emphasizes a general suppressive effect of actions on sensory processing, regardless of the predictability of the stimuli. Both accounts have received empirical support, which suggests that both mechanisms may exist. In chapter 2, three behavioural studies concerning the influence of motor activation on auditory perception were presented. Study 1 compared the effect of SA and attention in an auditory detection task and showed that SA was present even when substantial attention was paid to unpredictable stimuli. Study 2 compared the loudness perception of tones generated by others between Chinese and British participants. Compared to externally generated tones, a decrease in perceived loudness for others generated tones was found among Chinese but not among the British. In study 3, partial evidence was found that even when reading words that are related to action, auditory detection performance was impaired. In chapter 3, the classic SA effect of M100 suppression was replicated with MEG in study 4. With time-frequency analysis, a potential neural information processing sequence was found in auditory cortex. Prior to the onset of self-generated tones, there was an increase of oscillatory power in the alpha band. After the stimulus onset, reduced gamma power and alpha/beta phase locking were found. The three temporally segregated oscillatory events correlated with each other and with SA effect, which may be the underlying neural implementation of SA. In chapter 4, a TMS-MEG study was presented investigating the role of the cerebellum in adapting to delayed presentation of self-generated tones (study 5). It demonstrated that in sham stimulation condition, the brain can adapt to the delay (about 100 ms) within 300 trials of learning by showing a significant increase of SA effect in the suppression of M100, but not M200 component. Whereas after stimulating the cerebellum with a suppressive TMS protocol, the adaptation in M100 suppression disappeared and the pattern of M200 suppression reversed to M200 enhancement. These data support the idea that the suppressive effect of actions on auditory processing is a consequence of both motor driven sensory predictions and general sensory gating. The results also demonstrate the importance of neural oscillations in implementing SA effect and the critical role of the cerebellum in learning sensory predictions under sensory perturbation.
Resumo:
-
Resumo:
Practice-led or multi modal theses (describing examinable outcomes of postgraduate study which comprise the practice of dancing/choreography with an accompanying exegesis) are an emerging strength of dance scholarship; a form of enquiry that has been gaining momentum for over a decade, particularly in Australia and the United Kingdom. It has been strongly argued that, in this form of research, legitimate claims to new knowledge are embodied predominantly within the practice itself (Pakes, 2003) and that these findings are emergent, contingent and often interstitial, contained within both the material form of the practice and in the symbolic languages surrounding the form. In a recent study on ‘dancing’ theses Phillips, Stock, Vincs (2009) found that there was general agreement from academics and artists that ‘there could be more flexibility in matching written language with conceptual thought expressed in practice’. The authors discuss how the seemingly intangible nature of danced / embodied research, reliant on what Melrose (2003) terms ‘performance mastery’ by the ‘expert practitioner’ (2006, Point 4) involving ‘expert’ intuition (2006, Point 5), might be accessed, articulated and validated in terms of alternative ways of knowing through exploring an ongoing dialogue in which the danced practice develops emergent theory. They also propose ways in which the danced thesis can be ‘converted’ into the required ‘durable’ artefact which the ephemerality of live performance denies, drawing on the work of Rye’s ‘multi-view’ digital record (2003) and Stapleton’s ‘multi-voiced audio visual document’(2006, 82). Building on a two-year research project (2007-2008) Dancing Between Diversity and Consistency: Refining Assessment in Postgraduate Degrees in Dance, which examined such issues in relation to assessment in an Australian context, the three researchers have further explored issues around interdisciplinarity, cultural differences and documentation through engaging with the following questions: How do we represent research in which understandings, meanings and findings are situated within the body of the dancer/choreographer? Do these need a form of ‘translating’ into textual form in order to be accessed as research? What kind of language structures can be developed to effect this translation: metaphor, allusion, symbol? How important is contextualising the creative practice? How do we incorporate differing cultural inflections and practices into our reading and evaluation? What kind of layered documentation can assist in producing a ‘durable’ research artefact from a non-reproduce-able live event?