981 resultados para assisted-computer
Resumo:
Laparoscopy is a surgical procedure on which operations in the abdomen are performed through small incisions using several specialized instruments. The laparoscopic surgery success greatly depends on surgeon skills and training. To achieve these technical high-standards, different apprenticeship methods have been developed, many based on in vivo training, an approach that involves high costs and complex setup procedures. This paper explores Virtual Reality (VR) simulation as an alternative for novice surgeons training. Even though several simulators are available on the market claiming successful training experiences, their use is extremely limited due to the economic costs involved. In this work, we present a low-cost laparoscopy simulator able to monitor and assist the trainee’s surgical movements. The developed prototype consists of a set of inexpensive sensors, namely an accelerometer, a gyroscope, a magnetometer and a flex sensor, attached to specific laparoscopic instruments. Our approach allows repeated assisted training of an exercise, without time constraints or additional costs, since no human artificial model is needed. A case study of our simulator applied to instrument manipulation practice (hand-eye coordination) is also presented.
Resumo:
Recent progresses in the software development world has assisted a change in hardware from heavy mainframes and desktop machines to unimaginable small devices leading to the prophetic "third computing paradigm", Ubiquitous Computing. Still, this novel unnoticeable devices lack in various capabilities, like computing power, storage capacity and human interface. Connectivity associated to this devices is also considered an handicap which comes generally associated expensive and limited protocols like GSM and UMTS. Considering this scenario as background, this paper presents a minimal communication protocol introducing better interfaces for limited devices. Special attention has been paid to the limitations of connectivity, storage capacity and scalability of the developed software applications. Illustrating this new protocol, a case-study is presented addressing car sensors communicating with a central
Resumo:
Abstract: in Portugal, and in much of the legal systems of Europe, «legal persons» are likely to be criminally responsibilities also for cybercrimes. Like for example the following crimes: «false information»; «damage on other programs or computer data»; «computer-software sabotage»; «illegitimate access»; «unlawful interception» and «illegitimate reproduction of protected program». However, in Portugal, have many exceptions. Exceptions to the «question of criminal liability» of «legal persons». Some «legal persons» can not be blamed for cybercrime. The legislature did not leave! These «legal persons» are v.g. the following («public entities»): legal persons under public law, which include the public business entities; entities utilities, regardless of ownership; or other legal persons exercising public powers. In other words, and again as an example, a Portuguese public university or a private concessionaire of a public service in Portugal, can not commit (in Portugal) any one of cybercrime pointed. Fair? Unfair. All laws should provide that all legal persons can commit cybercrimes. PS: resumo do artigo em inglês.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques
Resumo:
Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.
Resumo:
The Ambient Assisted Living (AAL) area is in constant evolution, providing new technologies to users and enhancing the level of security and comfort that is ensured by house platforms. The Ambient Assisted Living for All (AAL4ALL) project aims to develop a new AAL concept, supported on a unified ecosystem and certification process that enables a heterogeneous environment. The concepts of Intelligent Environments, Ambient Intelligence, and the foundations of the Ambient Assisted Living are all presented in the framework of this project. In this work, we consider a specific platform developed in the scope of AAL4ALL, called UserAccess. The architecture of the platform and its role within the overall AAL4ALL concept, the implementation of the platform, and the available interfaces are presented. In addition, its feasibility is validated through a series of tests.
Resumo:
Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.
Resumo:
Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.
Resumo:
In this text, we intend to explore the possibilities of sound manipulation in a context of augmented reality (AR) through the use of robots. We use the random behaviour of robots in a limited space for the real-time modulation of two sound characteristics: amplitude and frequency. We add the possibility of interaction with these robots, providing the user the opportunity to manipulate the physical interface by placing markers in the action space, which alter the behaviour of the robots and, consequently, the audible result produced. We intend to demonstrate through the agents, programming of random processes and direct manipulation of this application, that it is possible to generate empathy in interaction and obtain specific audible results, which would be difficult to otherwise reproduce due to the infinite loops that the interaction promotes.
Resumo:
In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
Resumo:
On thermolysis appropriately substituted N-silyloxy-N-allyl enamines undergo smooth 3,3-sigmatropic rearrangments to the corresponding N-silyloxy imino ethers.
Resumo:
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.
Resumo:
MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of m-xylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis. (C) 2011 Elsevier B.V. All rights reserved.