398 resultados para apolipoprotein
Resumo:
Die antioxidative Aktivität des Enzyms Glutathionperoxidase-1 (GPx-1) schützt vor Atherosklerose und ihren Folgeerkrankungen. In einer Vorstudie konnten wir zeigen, dass der Mangel an GPx-1 die Atheroskleroseentwicklung in Apolipoprotein E defizienten (ApoE-/-) Mäusen beschleunigt und modifiziert. Allerdings sind die Verteilung der GPx-1 in atherosklerotischen Läsionen und die Mechanismen für den erhöhten Makrophagengehalt in der Läsion noch nicht geklärt. Deshalb haben wir (1) die in-situ Expression der GPx-Isoformen in atherosklerotischen Läsionen von GPx-1-/-ApoE-/- und ApoE-/- Mäusen und (2) den Einfluss der GPx-1 Defizienz auf die Schaumzellbildung und Proliferation der Peritonealmakrophagen in ApoE-/- Mäusen untersucht. Die GPx-1-/-ApoE-/- und ApoE-/- Weibchen wurden für 6 und 12 Wochen auf einer atherogenen „Western-type“ Diät gehalten. Die in situ-Hybridisierung zeigte, dass die verschiedenen Isoformen der GPx (GPx-1, GPx-3, GPx-4) vorwiegend in Makrophagen, nicht jedoch in glatten Muskelzellen der atherosklerotischen Läsionen von ApoE-/- Mäusen exprimiert wurden. Für die in vitro Untersuchungen wurden 5 Monate alte, GPx-1 defiziente und Wildtyp-Mäuse, gehalten auf Normaldiät, verwendet. Die Öl-Rot-O Färbung zeigte, dass die GPx-1 Defizienz die OxLDL (oxidiertes LDL) - und E-LDL (enzymatisch modifiziertes LDL) - induzierte Schaumzellbildung förderte. Darüber hinaus war die OxLDL-induzierte Cholesterinakkumulation (zellulärer Cholesterinester/ Cholesterin-Gehalt) in GPx-1 defizienten Makrophagen verstärkt, sodass ein Mangel an GPx-1 die Aufnahme von OxLDL durch Monozyten und damit die Umwandlung in Schaumzellen beschleunigt. Hinsichtlich der Proliferation zeigte sich, dass MCSF (Macrophage Colony-Stimulating Facotr) ein stärkerer Stimulus als OxLDL ist. Ein Mangel an GPx-1 fördert die Proliferation zusätzlich. Daran ist die ERK1/2 (extracellular-signal regulated kinase 1/2) - Kaskade beteiligt, denn es wurde eine schnelle Phosphorylierung der ERK1/2-Kaskade durch MCSF und/oder OxLDL nachgewiesen. Entsprechend reduzieren ERK1/2-Inhibitoren die proliferative Aktivität der Makrophagen. Die Hemmung der p38-MAPK (p38 mitogen-activated protein kinase) führt zur vermehrten Proliferation und bei gleichzeitig verringerter Caspase-3/7 Aktivität der Makrophagen unabhängig von der Expression der GPx-1. Ein Mangel an GPx-1 hat auch keinen Einfluss auf die MCSF-vermittelte Aktivierung der p38-MAPK und JNK (c-Jun N-terminal kinase). Zusammenfassend läßt sich feststellen, dass die GPx-1-Defizienz einen signifikanten Einfluss auf die Schaumzellbildung und Proliferation von Makrophagen hat, was zur Beschleunigung der Atherosklerose und zu vermehrter Zellularität der entstehenden atherosklerotischen Läsionen führt. Die Proliferation wird über den ERK1/2 Signal-transduktionsweg positiv und über den p38-MAPK Weg negativ reguliert, wobei die ERK1/2-Kaskade empfindlich gegenüber oxidativem Stress bei GPx-1-Defizienz ist.
Resumo:
Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.
Resumo:
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.
Resumo:
SCOPE: Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE(-/-) ) mice. METHODS AND RESULTS: XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE(-/-) mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE(-/-) mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE(-/-) mice compared with mice fed western-type diet alone. CONCLUSION: The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase.
Resumo:
Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.
Resumo:
A genetic polymorphism in the human gene encoding connexin37 (CX37, encoded by GJA4, also known as CX37) has been reported as a potential prognostic marker for atherosclerosis. The expression of this gap-junction protein is altered in mouse and human atherosclerotic lesions: it disappears from the endothelium of advanced plaques but is detected in macrophages recruited to the lesions. The role of CX37 in atherogenesis, however, remains unknown. Here we have investigated the effect of deleting the mouse connexin37 (Cx37) gene (Gja4, also known as Cx37) on atherosclerosis in apolipoprotein E-deficient (Apoe(-/-)) mice, an animal model of this disease. We find that Gja4(-/-)Apoe(-/-) mice develop more aortic lesions than Gja4(+/+)Apoe(-/-) mice that express Cx37. Using in vivo adoptive transfer, we show that monocyte and macrophage recruitment is enhanced by eliminating expression of Cx37 in these leukocytes but not by eliminating its expression in the endothelium. We further show that Cx37 hemichannel activity in primary monocytes, macrophages and a macrophage cell line (H36.12j) inhibits leukocyte adhesion. This antiadhesive effect is mediated by release of ATP into the extracellular space. Thus, Cx37 hemichannels may control initiation of the development of atherosclerotic plaques by regulating monocyte adhesion. H36.12j macrophages expressing either of the two CX37 proteins encoded by a polymorphism in the human GJA4 gene show differential ATP-dependent adhesion. These results provide a potential mechanism by which a polymorphism in CX37 protects against atherosclerosis.
Resumo:
Activation-induced cytidine deaminase (AID) is indispensable for immunoglobulin maturation by somatic hypermutations and class switch recombination and is supposed to deaminate cytidines in DNA, while its homolog APOBEC-1 edits apolipoprotein (apo) B mRNA by cytidine deamination. We studied the editing activity of APOBEC-1 and AID in yeast using the selectable marker Gal4 linked to its specific inhibitor protein Gal80 via an apo B cassette (Gal4-C) or via the variable region of a mouse immunoglobulin heavy chain gene (Gal4-VH). Expression of APOBEC-1 induced C to U editing in up to 15% of the Gal4-C transcripts, while AID was inactive in this reaction even in the presence of the APOBEC-1 complementation factor. After expression of APOBEC-1 as well as AID approximately 10(-3) of yeast cells survived low stringency selection and expressed beta-galactosidase. Neither AID nor APOBEC-1 mutated the VH sequence of Gal4-VH, and consequently the yeast colonies did not escape high stringent selection. AID, however, induced frequent plasmid recombinations that were only rarely observed with APOBEC-1. In conclusion, AID cannot substitute APOBEC-1 to edit the apo B mRNA, and the expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed Gal4-VH sequence. Cofactors for AID induced somatic hypermutations of immunoglobulin variable regions, that are present in B cells and a variety of non-B cells, appear to be missing in yeast. In contrast to APOBEC-1, AID alone does not exhibit an intrinsic specificity for its target sequences.
Resumo:
G protein-coupled receptors (GPCRs) are seven transmembrane domain proteins that transduce extracellular signals across the plasma membrane and couple to the heterotrimeric family of G proteins. Like most intrinsic membrane proteins, GPCRs are capable of oligomerization, the function of which has only been established for a few different receptor systems. One challenge in understanding the function of oligomers relates to the inability to separate monomeric and oligomeric receptor complexes in membrane environments. Here we report the reconstitution of bovine rhodopsin, a GPCR expressed in the retina, into an apolipoprotein A-I phospholipid particle, derived from high density lipoprotein (HDL). We demonstrate that rhodopsin, when incorporated into these 10 nm reconstituted HDL (rHDL) particles, is monomeric and functional. Rhodopsin.rHDL maintains the appropriate spectral properties with respect to photoactivation and formation of the active form, metarhodopsin II. Additionally, the kinetics of metarhodopsin II decay is similar between rhodopsin in native membranes and rhodopsin in rHDL particles. Photoactivation of monomeric rhodopsin.rHDL also results in the rapid activation of transducin, at a rate that is comparable with that found in native rod outer segments and 20-fold faster than rhodopsin in detergent micelles. These data suggest that monomeric rhodopsin is the minimal functional unit in G protein activation and that oligomerization is not absolutely required for this process.
Resumo:
Nitric oxide (NO) and Reelin both modulate neuronal plasticity in developing and mature synaptic networks. We recently showed a loss of neuronal nitric oxide synthase (nNOS) protein in the olfactory bulb of reeler mutants and advanced the hypothesis that the Reelin and NO signalling pathways may influence each other. We now studied the distribution of NO sensitive guanylyl cyclase (NOsGC), Reelin and its receptor Apolipoprotein E2 (ApoEr2) in the olfactory bulb by multiple fluorescence labelling and tested whether nNOS and ApoEr2 colocalize in this area. We also essayed the protein content of NOsGC in the reeler olfactory bulb and tested whether there are any changes in nNOS and NOsGC protein in other reeler brain areas. Olfactory bulb interneurons expressing ApoEr2 and nNOS are only few in the glomerular layer but represent the large majority of granule cell layer interneurons. Conversely, NOsGC interneurons are rare in the granule cell layer and abundant as periglomerular cells. Reelin containing periglomerular cells almost entirely belong to the NOsGC subset. These data further support the hypothesis of a reciprocal signalling between Reelin/NOsGC and ApoEr2/nNOS expressing neurons to affect olfactory bulb activity. We also show that a significant rise in NOsGC content accompanies the decrease of nNOS protein in the reeler olfactory bulb. The same reciprocal changes present in the cortex/striatum and the hippocampus of reeler mice. Thus, the influence that the deficit of extracellular Reelin seems to exert on nNOS and its receptor is not limited to the olfactory bulb but is a general feature of the reeler brain.
Resumo:
BACKGROUND: Hepatic steatosis may promote progression of chronic hepatitis C (CHC). Microsomal triglyceride transfer protein (MTP) is required for assembly and secretion of ApoB lipoprotein and is implicated in hepatitis C virus (HCV)-related steatosis. The MTP -493G/T polymorphism may promote liver fat accumulation, but its role in HCV-related steatosis is still unclear. METHODS: Two hundred ninety-eight CHC patients were studied and genotyped for MTP -493G/T variants. Hepatic MTP mRNA expression and activity were determined in a subgroup. RESULTS: Patients with grades 2/3 steatosis were older, had a higher body mass index (BMI), more advanced fibrosis and lower MTP mRNA expression and carried more often HCV genotype 3 and the MTP T allele. Age, BMI, HCV-3 and MTP T allele [odds ratio (OR) 2.05; 95% confidence interval (CI) 1.2-3.53; P=0.009] were independent risk factors for steatosis grades 2/3, and in HCV genotype non-3 patients, the MTP T allele was the strongest predictor for steatosis grade 2/3 (OR 2.17; 95% CI 1.22-3.86; P=0.008). Moreover, TT carriers had higher high-density lipoprotein (65.6+/-14.6 vs 56.1+/-16.2 mg/dl; P=0.003) and apolipoprotein AI (1.80+/-0.3 vs 1.60+/-0.3 g/L; P=0.005) levels than G allele carriers. CONCLUSIONS: Chronic hepatitis C patients with the MTP -493T allele reveal higher grades of steatosis, indicating a relevant contribution to liver fat accumulation, particularly in HCV non-3 patients.
Resumo:
Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.
Resumo:
Patients with type 1 diabetes are at increased risk of cardiovascular disease, which may be related to abnormal lipid metabolism. Secretion and clearance of VLDL apolipoprotein B100 (apoB) are important determinants of plasma lipid concentrations and are known to be influenced by hormones, including insulin and growth hormone.
Resumo:
Dyslipidaemia is often associated with adult growth hormone (GH) deficiency. Reduced removal of very-low-density lipoprotein (VLDL) apolipoprotein B-100 (apo B-100) can, in part, explain the "unfavourable" lipid profile of these patients. By modifying VLDL composition and through its action on low-density lipoprotein (LDL) receptors, GH may improve the lipid profile by increasing direct hepatic uptake of VLDL apo B-100, thereby decreasing conversion to LDL. Although GH stimulates VLDL apo B-100 secretion, this is exceeded by its effects in upregulating LDL receptors and modifying VLDL composition. We hypothesize that the improved lipid profile, in particular the decrease in cholesterol-rich VLDL particles, may contribute to a possible antiatherogenic action of GH. GH appears to have an important role in hepatic apo B-100 metabolism. However, we are just at the beginning of understanding the underlying mechanism. Further studies are required to investigate the effect of GH on other lipoprotein classes, in particular VLDL subfractions, intermediate-density lipoprotein, LDL and high-density lipoprotein. The key question, however, remains as to whether GH replacement therapy can reduce cardiovascular mortality. Long-term studies with sufficient numbers of patients are required to answer this question.
Resumo:
Wilms' tumor (WT) is a childhood embryonic tumor of the kidney. In some cases, WT has been associated with a chromosome deletion in the region 11p13. The majority of WT cases, however, have normal karyotypes with no discernable deletions or rearrangements of chromosome 11.^ To study the genetic events predisposing to the development of WT, I have used a number of gene markers specific for chromosome 11. Gene probes for human catalase and apolipoprotein A1 were localized to chromosome 11 by in situ hybridization. A number of other probes previously mapped to chromosome 11 were also used. Nine WT patients who were heterozygous for at least one 11p marker were shown to lose heterozygosity in their tumor DNA. Gene dosage experiments demonstrated that two chromosomes 11 were present although loss of heterozygosity had occurred in all but two cases. By using gene probes from the short and long arms of chromosome 11, I discerned that loss of heterozygosity was due to somatic recombination in four cases, chromosome deletion in two cases, and chromosome loss and reduplication or somatic recombination in these cases. Examination of DNAs from the parents of six of these patients indicated that the alleles that were lost in tumor tissues were alleles inherited from the mother. In sporadic WT cases one would expect the loss of alleles to be random. These data suggest that the loss of alleles resulting in the development of WT is not a random event, however, the significance of this is not known. ^
Resumo:
Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.