982 resultados para antiwear additives


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete is the most widely used construction material. At the same time, however, the concrete industry is a major CO2 emitter thus contributing towards global warming. While enhanced efficiency in the production of concrete is not likely to dramatically reduce the CO2 emissions, cement replacement by a supplementary material or mineral additive, such as silica fume, which is not associated with CO2 emission, can substantially reduce the aforementioned problem. The present work discusses the benefits of incorporating mineral additives in concrete and shows that these additives can improve both the mechanical and physical properties of the end-product, and hence its durability, albeit with a reduction in cement content. © 2009 WIT Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of pre-ignitions at low engine speed. These pre-ignitions may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, pre-ignitions are thought to arise from local autoignition of areas in the cylinder which are rich in low ignition delay "contaminants" such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper presents results from tests in which model "contaminants", consisting of engine lubricant base stocks, base stocks mixed with fuel and base stocks mixed with one or more additives were injected directly into a test engine to determine their propensity to ignite. The ignition tendency was found to be lower for less reactive base stocks and for base stocks mixed with certain additives. Further, when small amounts of fuel were mixed with relatively non-ignitive lubricant base stocks the ignition tendency was found to increase significantly. These results may guide development of new lubricants which could be used to reduce megaknock in downsized engines. Copyright © 2014 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

实验研究了添加剂对甲烷气体水合物形成过程的影响。发现微量的表面活性剂降低了甲烷气体水合物在静止反应器中形成的诱导时间,并使水合物快速形成和生长,提高了水合物形成过程中的填充密度。阴离子表面活性剂(十二烷基硫酸钠)对水合物生长的促进作用比非离子表面活性剂(烷基多糖苷)强。液态烃环戊烷降低了水合物形成的诱导时间,但环戊烷不能提高水合物的填充密度。


The effect of additives on methane gas hydrate formation was tested. The induction time of methane hydrate formation was reduced, gas hydrate could grow rapidly, and the methane consumption was improved during hydrate formation in a quiescent cell with micella surfactants. The effect of an anionic surfactant ( sodium dodecyl sulfate) on gas hydrate formation is more pronounced compared to a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane reduced the induction time of hydrate formation, but could not improve the methane consumption during gas hydrate formation in a quiescent cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes, yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes, namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequency-thickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model, the kinetics of SIP is simply described by two variables, which are related to two polymerization constants, namely a = 1/(k (p,s,app)-[M][R center dot](0)) and b = k (t,s,app)/(k (p,s,app)[M]). Factors that could alter the kinetics of SIP are studied, including (i) the molecular weight of monomers, (ii) the solvent used, (iii) the initial density of the initiator, (iv) the concentration of monomer, [M], and (v) the catalyst system (ratio among the ingredients, metal, ligands, and additives). The dynamic nature of IE is also described by these two variables, IE = a/(a + bt). Instead of the molecular weight and the polydispersity, we suggest that film thickness, the two kinetic parameters (a and b), and the initial density of the initiator and IE be the parameters that characterize ultra-thin polymer brushes. Besides the kinetics study of SIP, the reported method has many other applications, for example, in the fast screening of catalyst system for SIP and other polymerization systems.