874 resultados para antiretrovirus agent
Resumo:
This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.
Resumo:
This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth: distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures.
Resumo:
C.H. Orgill, N.W. Hardy, M.H. Lee, and K.A.I. Sharpe. An application of a multiple agent system for flexible assemble tasks. In Knowledge based envirnments for industrial applications including cooperating expert systems in control. IEE London, 1989.
Resumo:
Gustavo Chemale, Arjan J. van Rossum, James R. Jefferies, John Barrett, Peter M. Brophy, Henrique B. Ferreira, Arnaldo Zaha (2003). Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3(8), 1633-1636. Sponsorship: CNPq / PADCT/CNPq / FAPERGS (Brazil)/ BBSRC (UK) RAE2008
Resumo:
Paper presented at the Digital Humanities 2009 conference in College Park, Maryland.
Resumo:
The insider threat is a security problem that is well-known and has a long history, yet it still remains an invisible enemy. Insiders know the security processes and have accesses that allow them to easily cover their tracks. In recent years the idea of monitoring separately for these threats has come into its own. However, the tools currently in use have disadvantages and one of the most effective techniques of human review is costly. This paper explores the development of an intelligent agent that uses already in-place computing material for inference as an inexpensive monitoring tool for insider threats. Design Science Research (DSR) is a methodology used to explore and develop an IT artifact, such as for this intelligent agent research. This methodology allows for a structure that can guide a deep search method for problems that may not be possible to solve or could add to a phenomenological instantiation.
Resumo:
PURPOSE: To compare the efficacy of paclitaxel versus doxorubicin given as single agents in first-line therapy of advanced breast cancer (primary end point, progression-free survival ¿PFS) and to explore the degree of cross-resistance between the two agents. PATIENTS AND METHODS: Three hundred thirty-one patients were randomized to receive either paclitaxel 200 mg/m(2), 3-hour infusion every 3 weeks, or doxorubicin 75 mg/m(2), intravenous bolus every 3 weeks. Seven courses were planned unless progression or unacceptable toxicity occurred before the seven courses were finished. Patients who progressed within the seven courses underwent early cross-over to the alternative drug, while a delayed cross-over was optional for the remainder of patients at the time of disease progression. RESULTS: Objective response in first-line therapy was significantly better (P =.003) for doxorubicin (response rate ¿RR, 41%) than for paclitaxel (RR, 25%), with doxorubicin achieving a longer median PFS (7.5 months for doxorubicin v 3.9 months for paclitaxel, P <.001). In second-line therapy, cross-over to doxorubicin (91 patients) and to paclitaxel (77 patients) gave response rates of 30% and 16%, respectively. The median survival durations of 18.3 months for doxorubicin and 15.6 months for paclitaxel were not significantly different (P =.38). The doxorubicin arm had greater toxicity, but this was counterbalanced by better symptom control. CONCLUSION: At the dosages and schedules used in the present study, doxorubicin achieves better disease and symptom control than paclitaxel in first-line treatment. Doxorubicin and paclitaxel are not totally cross-resistant, which supports further investigation of these drugs in combination or in sequence, both in advanced disease and in the adjuvant setting.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.
Resumo:
This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases using agents. The adaptive CBR process and the architecture of the system are presented. A case study is presented to illustrate and evaluate the approach. The process of creating and maintaining the dynamic data structures is discussed. The similarity metrics employed by the system are used to support the process of optimisation of the collaboration between the agents which is based on the use of a blackboard architecture. The blackboard architecture is shown to support the efficient collaboration between the agents to achieve an efficient overall CBR solution, while using case-based reasoning methods to allow the overall system to adapt and “learn” new collaborative strategies for achieving the aims of the overall CBR problem solving process.