874 resultados para antiparasitic agent
Resumo:
This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.
Resumo:
This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth: distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures.
Resumo:
C.H. Orgill, N.W. Hardy, M.H. Lee, and K.A.I. Sharpe. An application of a multiple agent system for flexible assemble tasks. In Knowledge based envirnments for industrial applications including cooperating expert systems in control. IEE London, 1989.
Resumo:
Gustavo Chemale, Arjan J. van Rossum, James R. Jefferies, John Barrett, Peter M. Brophy, Henrique B. Ferreira, Arnaldo Zaha (2003). Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3(8), 1633-1636. Sponsorship: CNPq / PADCT/CNPq / FAPERGS (Brazil)/ BBSRC (UK) RAE2008
Resumo:
Paper presented at the Digital Humanities 2009 conference in College Park, Maryland.