964 resultados para animal models: nonhuman primate
Resumo:
Do stars govern our actions? Astrocyte involvement in rodent behavior
Resumo:
Les xarxes tròfiques o alimentàries subministren una representació gràfica de quina espècie menja a quina altra en un ecosistema. Les xarxes tròfiques empíriques publicades són cada vegada més complexes, i es fa més patent la qüestió de si hi ha trets comuns a totes elles. En els darrers anys s’ha realitzat un gran esforç per modelitzar l’arquitectura d’aquestes xarxes. En particular, dos models han rebut especial atenció: el model de nínxol i el de jerarquies. Tots dos models reprodueixen satisfactòriament un bon nombre de propietats estadístiques globals de les xarxes empíriques més completes. Hipotèticament però, els diferents mecanismes de selecció de preses en els models de nínxol i de jerarquies haurien de generar estructures locals diferents en les xarxes. Utilitzant un mètode de subxarxes (també subgrafs o motius ) que permet l’anàlisi quantitativa, s’ha analitzat l’arquitectura local de les xarxes amb l’objectiu de poder discernir quin dels dos models és més realista.
Resumo:
Aeromonas hydrophila és un bacil gram-negatiu, patogen oportunista d’animal i humans. La patogènesi d’A. Hydrophila és multifactorial. A fi d'identificar gens implicats en la virulència de la soca PPD134/91 d’A. hydrophila, vam realitzar experiments de substracció gènica, que van dur a la detecció de 22 fragments d’ADN que codificaven 19 potencials factors de virulencia, incloent un gen que codificava una proteïna de sistema de secreció de tipus III (T3SS). La importància creixent del T3SS en la patogènesi de diversos bacteris, ens va dur a identificar i analitzar l'agrupació gènica del T3SS de les soques AH-1 i AH-3 d’A. hydrophila. La inactivació dels gens de T3SS aopB i aopD d’A. hydrophila AH-1, i ascV d’A. hydrophila AH-3, comporta una disminució de la citotoxicitat, un increment de la fagocitosi, i una reducció de la virulència en diferents models animals. Aquests resultats demostren que el T3SS és necessari per a la patogenicitat. També vam clonar i seqüenciar una ADP-ribosiltransferasa (AexT) a la soca AH-3 d’A. hydrophila, i vam demostrar que aquesta toxina és translocada via el T3SS, sistema que al seu torn sembla ser induïble in vitro en condicions de depleció de calci. El mutant en el gen aexT de la soca AH-3 d’A. hydrophila va mostrar una lleugera reducció de la virulència, assajada amb diferents mètodes. Mitjançant l'ús de diferents sondes d’ADN, vam determinar la presència del T3SS en soques tant clíniques com ambientals de diferents espècies del gènere Aeromonas: A. hydrophila, A. veronii, i A. caviae, i la codistribució d'aquesta agrupació gènica i el gen aexT. Finalment, amb la finalitat d'estudiar la regulació transcripcional de l'agrupació gènica de T3SS i de l’efector AexT A. hydrophila AH-3, vam aïllar els promotors predits per l’operó aopN-aopD i el gen aexT, i els vam fusionar amb el gen reporter gfp (Green Fluorescence Protein). A més, vam demostrar que l'expressió d'ambdós promotors depèn de diferents components bacterians, com per exemple el sistema de dos components PhoP/PhoQ, el sistema de quorum sensing AhyI/AhyR, o el complex piruvat deshidrogenasa.
Resumo:
After ischemic stroke, the ischemic damage to brain tissue evolves over time and with an uneven spatial distribution. Early irreversible changes occur in the ischemic core, whereas, in the penumbra, which receives more collateral blood flow, the damage is more mild and delayed. A better characterization of the penumbra, irreversibly damaged and healthy tissues is needed to understand the mechanisms involved in tissue death. MRSI is a powerful tool for this task if the scan time can be decreased whilst maintaining high sensitivity. Therefore, we made improvements to a (1) H MRSI protocol to study middle cerebral artery occlusion in mice. The spatial distribution of changes in the neurochemical profile was investigated, with an effective spatial resolution of 1.4 μL, applying the protocol on a 14.1-T magnet. The acquired maps included the difficult-to-separate glutamate and glutamine resonances and, to our knowledge, the first mapping of metabolites γ-aminobutyric acid and glutathione in vivo, within a metabolite measurement time of 45 min. The maps were in excellent agreement with findings from single-voxel spectroscopy and offer spatial information at a scan time acceptable for most animal models. The metabolites measured differed with respect to the temporal evolution of their concentrations and the localization of these changes. Specifically, lactate and N-acetylaspartate concentration changes largely overlapped with the T(2) -hyperintense region visualized with MRI, whereas changes in cholines and glutathione affected the entire middle cerebral artery territory. Glutamine maps showed elevated levels in the ischemic striatum until 8 h after reperfusion, and until 24 h in cortical tissue, indicating differences in excitotoxic effects and secondary energy failure in these tissue types. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
The tumour necrosis factor (TNF) family members B cell activating factor (BAFF) and APRIL (a proliferation-inducing ligand) are crucial survival factors for peripheral B cells. An excess of BAFF leads to the development of autoimmune disorders in animal models, and high levels of BAFF have been detected in the serum of patients with various autoimmune conditions. In this Review, we consider the possibility that in mice autoimmunity induced by BAFF is linked to T cell-independent B cell activation rather than to a severe breakdown of B cell tolerance. We also outline the mechanisms of BAFF signalling, the impact of ligand oligomerization on receptor activation and the progress of BAFF-depleting agents in the clinical setting.
Resumo:
Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.
Resumo:
Introduction: Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. With no curative treatment available, current therapeutic approaches are aimed at symptom management. FXS is caused by silencing the FMR1 gene, which encodes FMRP; as loss of FMRP leads to the development of symptoms associated with FXS. Areas covered: In this evaluation, the authors examine the role of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of FXS, and its suitability as a target for rescuing the disease state. Furthermore, the authors review the evidence from preclinical studies of pharmacological interventions targeting mGluR5 in FXS. Lastly, the authors assess the findings from clinical studies in FXS, in particular the use of the Aberrant Behavior Checklist-Community Edition (ABC-C) and the recently developed ABC-C for FXS scale, as clinical endpoints to assess disease modification in this patient population. Expert opinion: There is cautious optimism for the successful treatment of the core behavioral and cognitive symptoms of FXS based on preclinical data in animal models and early studies in humans. However, the association between mGluR5-heightened responsiveness and the clinical phenotype in humans remains to be demonstrated. Many questions regarding the optimal treatment and outcome measures of FXS remain unanswered.
Resumo:
La 3,4-Metilendioximetanfetamina (MDMA, éxtasis) es un derivado anfetamínico sintético ampliamente usado como droga recreativa, que produce neurotoxicidad serotonérgica en animales y posiblemente también en humanos. El mecanismo subyacente de neurotoxicidad, incluye la formación de especies reactivas de oxigeno (ROS), pero la fuente de generación de estos es un punto de controversia. Se postula que la neurotoxicidad inducida por la MDMA es mediada por la formación de metabolitos bioreactivos. Específicamente, los metabolitos primarios de tipo catecol, la 3,4- dihidroximetanfetamina (HHMA) y la 3,4-dihidroxianfetamina (HHA), que luego dan lugar a la formación de conjugados con el glutatión y la N-acetilcisteína, y que conservan la capacidad de entrar en el ciclo redox y presentan neurotoxicidad serotonérgica en ratas. Aunque la presencia de dichos metabolitos se demostró recientemente en microdialisados de cerebros de ratas, su formación en humanos no se ha reportado aun. Este trabajo describe la detección de N-acetil-cisteína-HHMA (NAC-HHMA) y N-acetil-cisteína-HHA (NAC-HHA) en orina humana de 15 consumidores recreacionales de MDMA (1.5 mg/kg) en un entorno controlado. Los resultados revelan que en las primeras 4 horas después del consumo de MDMA aproximadamente el 0.002% de la dosis administrada es recuperada como aductos tioéter. Los polimorfismos genéticos en la expresión de las enzimas CYP2D6 y COMT, que en conjunto son las principales determinantes de los niveles estables de HHMA y HHA, posiblemente expliquen la variabilidad interindividual observada en la recuperación de la NAC-HHMA y la NAC-HHA en orina. Resumiendo, por primera vez se demuestra la formación de aductos tioéteres neurotóxicos de la MDMA en humanos. Estos resultados apoyan la hipótesis de que la bioactivación de la MDMA a metabolitos neurotóxicos es el mecanismo relevante para la generación de la neurotoxicidad en humanos.
Resumo:
Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.
Resumo:
OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.
Resumo:
The passive transfer of monoclonal antibodies, direct vaccination and in vitro assays have all shown that antigens associated with the tegumental membranes of Schistosoma mansoni are capable of mediating protective immune responses against the parasite in animal models. Furthermore, the principal antigens are highly antigenic during natural infection in man and stimulate strong humoral and cellular responses although, at present, their role in mediating protective immune responses in man remains equivocal. This presentation will review the current state of knowledge of the structure and expression of the major antigenic tegumental proteins of the schistosome and will attempt to relate the relevance of their structural features to possible function both in terms of protective immunity and parasite's ability to survive within the definitive host. A focus will be recent advances that have been made in the identification of means of anchoring of the antigenic proteins to the tegumental membrane. In addition, the implications of the structural complexity of the tegumental proteins in terms of their possible utility in vaccination and diagnosis will be considered.
Resumo:
In this review the authors analyze the effector and regulatory mechanisms in the immune response to schistosomiasis. To study these mechanisms two animal models were used, mouse and rat. The mouse totaly permissive host like human, show prominent-T cell control in the acquisition of resistance. But other mechanisms like antibody mediated cytotoxity (ADCC) involving eosinophils and IgG antibodies described in humans, are observed in rats. Also in this animal, it is observed specific IgE antibody high production and blood and tisssue eosinophilia. Using the rat model and schistosomula as target, some ADCC features have emerged: the cellular population involved are bone marrow derived inflammatory cell (mononuclear phagocytes, eosinophils and platelets), interacting with IgE through IgE Fc receptors. Immunization has been attempted using the recombinant protein Sm28/GST. Protection has been observed in rodents with significant decrease of parasite fecundity and egg viability affecting the number, size and volume of liver egg granulomas. The association of praziquantel and immunization with with Sm28/GST increases the resistance to infection and decreases egg viability. The authors suggest the possibility of the stablishment of a future vaccine against Schistosoma mansoni.
Resumo:
Humans can recognize categories of environmental sounds, including vocalizations produced by humans and animals and the sounds of man-made objects. Most neuroimaging investigations of environmental sound discrimination have studied subjects while consciously perceiving and often explicitly recognizing the stimuli. Consequently, it remains unclear to what extent auditory object processing occurs independently of task demands and consciousness. Studies in animal models have shown that environmental sound discrimination at a neural level persists even in anesthetized preparations, whereas data from anesthetized humans has thus far provided null results. Here, we studied comatose patients as a model of environmental sound discrimination capacities during unconsciousness. We included 19 comatose patients treated with therapeutic hypothermia (TH) during the first 2 days of coma, while recording nineteen-channel electroencephalography (EEG). At the level of each individual patient, we applied a decoding algorithm to quantify the differential EEG responses to human vs. animal vocalizations as well as to sounds of living vocalizations vs. man-made objects. Discrimination between vocalization types was accurate in 11 patients and discrimination between sounds from living and man-made sources in 10 patients. At the group level, the results were significant only for the comparison between vocalization types. These results lay the groundwork for disentangling truly preferential activations in response to auditory categories, and the contribution of awareness to auditory category discrimination.
Resumo:
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Resumo:
The thymus is a central lymphoid organ, in wich T cell precursors differentiale and generate most of the so-called T cell reprtoire. Along with a variety of acute infectious diseases, we and others determined important changes in both microenvironmental and lymphoid compartments of the organ. For example, one major and common feature observed in acute viral, bacterial and parasitic diseases, is a depletion of cortical thymocytes, mostly those bearing the CD4-CD8 double positive phenotype. This occurs simmultaneously to the relative enrichment in medullary CD4 or CD8 single positive cells, expressing high densities of the CD3 complex. Additionally we noticed a variety of changes in the thymic microenvironment (and particularly is epithelial component), comprising abnormal location of thymic epithelial cell subsets as well has a denser Ia-bearing cellular network. Moreover, the extracellular matrix network was altered with an intralobular increase of basement membrane proteins that positively correlated with the degree of thymocyte death. Lastly, anti-thymic cell antibodies were detected in both human and animal models of infectious diseases, and in some of them a phenomenon of molecular mimicry could be evidenced. Taken together, the data receiwed herein clearly show that the thymus should be regarded as a target in infectious diseases.