977 resultados para angiotensin AT(2) antagonist
Resumo:
We investigated the effects of losartan, an AT1-receptor blocker, and ramipril, a converting enzyme inhibitor, on the pressor response induced by angiotensin II (ANG II) and carbachol (a cholinergic receptor agonist). Male Holtzman rats (250-300 g) with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The injection of losartan (50 nmol/1 µl) into the LV blocked the pressor response induced by ANG II (12 ng/1 µl) and carbachol (2 nmol/1 µl). After injection of ANG II and carbachol into the LV, mean arterial pressure (MAP) increased to 31 ± 1 and 28 ± 2 mmHg, respectively. Previous injection of losartan abolished the increase in MAP induced by ANG II and carbachol into the LV (2 ± 1 and 5 ± 2 mmHg, respectively). The injection of ramipril (12 ng/1 µl) prior to carbachol blocked the pressor effect of carbachol to 7 ± 3 mmHg. These results suggest an interaction between central cholinergic pathways and the angiotensinergic system in the regulation of arterial blood pressure
Resumo:
We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition
Resumo:
There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an endogenous biologically active component of the renin-angiotensin system (RAS). In the present study, we investigated the effects of Ang-(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat hearts were perfused with two different media, i.e., Krebs-Ringer (2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentration-dependent (27-210 nM) reduction in coronary flow (25% reduction at highest concentration), while only slight and variable changes in contraction force and heart rate were observed. Under the same conditions, angiotensin II (Ang II; 27 and 70 nM) produced a significant reduction in coronary flow (39% and 48%, respectively) associated with a significant increase in force. A decrease in heart rate was also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with Ang-(1-7) or Ang II at 27 nM concentration produced similar changes in coronary flow, contraction force and heart rate. In isolated hearts perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant enhancement of reperfusion arrhythmias revealed by an increase in the incidence and duration of ventricular tachycardia and ventricular fibrillation (more than 30-min duration). The facilitation of reperfusion arrhythmias by Ang-(1-7) was associated with an increase in the magnitude of the decreased force usually observed during the post-ischemic period. The effects of Ang-(1-7) were abolished in isolated rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II (27 nM) was similar but less pronounced than that of Ang-(1-7) at the same concentration. These results indicate that the heart is a site of action for Ang-(1-7) and suggest that this heptapeptide may be involved in the mediation of the cardiac effects of the RAS
Resumo:
In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9% NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 ± 0.04 ml/min vs 1.45 ± 0.18 ml/min in vehicle-treated rats, P<0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 ± 0.34 ml/60 min and 3.39 ± 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.
Resumo:
Intra-amygdala infusion of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) prior to testing impairs inhibitory avoidance retention test performance. Increased training attenuates the impairing effects of amygdala lesions and intra-amygdala infusions of CNQX. The objective of the present study was to determine the effects of additional training on the impairing effects of intra-amygdala CNQX on expression of the inhibitory avoidance task. Adult female Wistar rats bilaterally implanted with cannulae into the border between the central and the basolateral nuclei of the amygdala were submitted to a single session or to three training sessions (0.2 mA, 24-h interval between sessions) in a step-down inhibitory avoidance task. A retention test session was held 48 h after the last training. Ten minutes prior to the retention test session, the animals received a 0.5-µl infusion of CNQX (0.5 µg) or its vehicle (25% dimethylsulfoxide in saline). The CNQX infusion impaired, but did not block, retention test performance in animals submitted to a single training session. Additional training prevented the impairing effect of CNQX. The results suggest that amygdaloid non-NMDA receptors may not be critical for memory expression in animals given increased training.
Resumo:
The excessive stimulation of beta-adrenergic receptors in the heart induces myocardial hypertrophy. There are several experimental data suggesting that this hypertrophy may also depend, at least partially, on the increase of local production of angiotensin II secondary to the activation of the cardiac renin-angiotensin system. In this study we investigated the effects of isoproterenol on the activity of angiotensin-converting enzyme (ACE) in the heart and also in the aorta and plasma. Male Wistar rats weighing 250 to 305 g were treated with a dose of (±)-isoproterenol (0.3 mg kg-1 day-1, N = 8) sufficient to produce cardiac hypertrophy without deleterious effects on the pumping capacity of the heart. Control rats (N = 7) were treated with vehicle (corn oil). The animals were killed one week later. ACE activity was determined in vitro in the four cardiac chambers, aorta and plasma by a fluorimetric assay. A significant hypertrophy was observed in both ventricular chambers. ACE activity in the atria remained constant after isoproterenol treatment. There was a significant increase (P<0.05) of ACE activity in the right ventricle (6.9 ± 0.9 to 8.2 ± 0.6 nmol His-Leu g-1 min-1) and in the left ventricle (6.4 ± 1.1 to 8.9 ± 0.8 nmol His-Leu g-1 min-1). In the aorta, however, ACE activity decreased (P<0.01) after isoproterenol (41 ± 3 to 27 ± 2 nmol His-Leu g-1 min-1) while it remained unchanged in the plasma. These data suggest that ACE expression in the heart can be increased by stimulation of beta-adrenoceptors. However, this effect is not observed on other local renin-angiotensin systems, such as the aorta. Our data also suggest that the increased sympathetic discharge and the elevated plasma concentration of catecholamines may contribute to the upregulation of ACE expression in the heart after myocardial infarction and heart failure.
Resumo:
The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.
Resumo:
It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.
Resumo:
Angiotensin-(1-7) (Ang-(1-7)) increased osmotic water permeability in the isolated toad skin, a tissue with functional properties similar to those of the distal mammalian nephron. Concentrations of 0.1 to 10 µM were effective, with a peak at 20 min. This effect was similar in magnitude to that of frog skin angiotensin II (Ang II) and oxytocin but lower than that of human Ang II and arginine-vasotocin. The AT2 angiotensin receptor antagonist PD 123319 (1.0 µM) fully inhibited the response to 0.1 µM Ang-(1-7) but had no effect on the response to Ang II at the same concentration. The specific receptor antagonist of Ang-(1-7), A-779, was ineffective in blocking the response to Ang-(1-7) and to frog skin Ang II. The AT1 receptor subtype antagonist losartan, which blocked the response to frog skin Ang II, was ineffective in blocking the response to Ang-(1-7). The present results support the view of an antidiuretic action of Ang-(1-7) in the mammalian nephron.
Resumo:
The 5-HT2B/2C receptor antagonist SB 206553 exerts anxiolytic effects in rat models of anxiety. However, these effects have been reported for standard rat strains, thus raising the issue of SB 206553 effects in rat strains displaying different levels of anxiety. Herein, the effects of SB 206553 in a 5-min elevated plus-maze test of anxiety were compared to those of the reference anxiolytic, diazepam, in two rat strains respectively displaying high (Lewis rats) and low (spontaneously hypertensive rats, SHR) anxiety. Diazepam (0.37, 0.75, or 1.5 mg/kg; 30 min before testing) increased in a dose-dependent manner the behavioral measures in SHR, but not in Lewis rats. On the other hand, SB 206553 (1.25, 2.5, or 5 mg/kg; 30 min before testing) failed to alter the anxiety parameters in both strains, whereas it increased closed arm entries in Lewis rats, suggesting that it elicited hyperactivity in the latter strain. Accordingly, the hypolocomotor effect of the nonselective 5-HT2B/2C receptor agonist m-chlorophenylpiperazine (1.5 mg/kg ip 20 min before a 15-min exposure to an activity cage) was prevented by the 1.25 and 2.5 mg/kg doses of SB 206553 in Lewis rats and SHR, respectively. Compared with SHR, Lewis rats may display a lower response to benzodiazepine-mediated effects and a more efficient control of locomotor activity by 5-HT2B/2C receptors.
Resumo:
We demonstrate here that acute third ventricle injections of GR 113808, a highly selective 5-HT4 antagonist, decrease water intake induced by a previous salt load while potentiating drinking elicited by hypovolemia induced by previous subcutaneous administration of polyethylene glycol in male Wistar rats (200 ± 20 g). At the dose of 160 nmol/rat, third ventricle injections of GR 113808 induced a significant reduction of water intake in salt-loaded animals after 120 min as compared to salt-loaded animals receiving third ventricle injections of saline (salt load + GR = 3.44 ± 0.41 ml, N = 12; salt load + saline = 5.74 ± 0.40 ml, N = 9). At the dose of 80 nmol/rat, GR 113808 significantly enhanced water intake in hypovolemic animals after 120 min as compared to hypovolemic animals receiving third ventricle injections of saline (hypovol + GR = 4.01 ± 0.27 ml, N = 8; hypovol + saline = 2.41 ± 0.23 ml, N = 12). We suggest that central 5-HT4 receptors may exert a positive drive on water intake due to hyperosmolarity and a negative input on drinking provoked by hypovolemia.
Resumo:
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
We investigated the role of a-adrenergic antagonists and clonidine injected into the medial septal area (MSA) on water intake and the decrease in Na+, K+ and urine elicited by ANGII injection into the third ventricle (3rdV). Male Holtzman rats with stainless steel cannulas implanted into the 3rdV and MSA were used. ANGII (12 nmol/µl) increased water intake (12.5 ± 1.7 ml/120 min). Clonidine (20 nmol/µl) injected into the MSA reduced the ANGII-induced water intake (2.9 ± 0.5 ml/120 min). Pretreatment with 80 nmol/µl yohimbine or prazosin into the MSA also reduced the ANGII-induced water intake (3.0 ± 0.4 and 3.1 ± 0.2 ml/120 min, respectively). Yohimbine + prazosin + clonidine injected into the MSA abolished the ANGII-induced water intake (0.2 ± 0.1 and 0.2 ± 0.1 ml/120 min, respectively). ANGII reduced Na+ (23 ± 7 µEq/120 min), K+ (27 ± 3 µEq/120 min) and urine volume (4.3 ± 0.9 ml/120 min). Clonidine increased the parameters above. Clonidine injected into the MSA abolished the inhibitory effect of ANGII on urinary sodium. Yohimbine injected into the MSA also abolished the inhibitory effects of ANGII. Yohimbine + clonidine attenuated the inhibitory effects of ANGII. Prazosin injected into the MSA did not cause changes in ANGII responses. Prazosin + clonidine attenuated the inhibitory effects of ANGII. The results showed that MSA injections of a1- and a2-antagonists decreased ANGII-induced water intake, and abolished the Na+, K+ and urine decrease induced by ANGII into the 3rdV. These findings suggest the involvement of septal a1- and a2-adrenergic receptors in water intake and electrolyte and urine excretion induced by central ANGII.
Resumo:
There is a close association between the location of angiotensin (Ang) receptors and many important brain nuclei involved in the regulation of the cardiovascular system. The present review encompasses the physiological role of Ang II in the brainstem, particularly in relation to its influence on baroreflex control of the heart and kidney. Activation of AT1 receptors in the brainstem by fourth ventricle (4V) administration to conscious rabbits or local administration of Ang II into the rostral ventrolateral medulla (RVLM) of anesthetized rabbits acutely increases renal sympathetic nerve activity (RSNA) and RSNA baroreflex responses. Administration of the Ang antagonist Sarile into the RVLM of anesthetized rabbits blocked the effects of Ang II on the RSNA baroreflex, indicating that the RVLM is the major site of sympathoexcitatory action of Ang II given into the cerebrospinal fluid surrounding the brainstem. However, in conscious animals, blockade of endogenous Ang receptors in the brainstem by the 4V AT1 receptor antagonist losartan resulted in sympathoexcitation, suggesting an overall greater activity of endogenous Ang II within the sympathoinhibitory pathways. However, the RSNA response to airjet stress in conscious rabbits was markedly attenuated. While we found no effect of acute central Ang on heart rate baroreflexes, chronic 4V infusion inhibited the baroreflex and chronic losartan increased baroreflex gain. Thus, brainstem Ang II acutely alters sympathetic responses to specific afferent inputs thus forming part of a potentially important mechanism for the integration of autonomic response patterns. The sympathoexcitatory AT1 receptors appear to be activated during stress, surgery and anesthesia.